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Eµ, Bµ measured by ZAMOs through F µν = UµEν − U νEµ + �µνλρBλUρ. Under these con-
ditions, the fundamental equation that governs the steady-state structure of the force-free
magnetosphere around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)

ρe and J̃ are the electric charge and current densities respectively. Eq. (4) is supplemented
by Maxwell’s equations of electrodynamics

∇̃ · B̃ = 0

∇̃ · Ẽ = 4πρe

∇̃ × (αB̃) = 4παJ̃

∇× (αẼ) = 0 . (5)

Here,
∇̃ · Ã ≡ Aj

;j , (∇̃ × Ã)i ≡ [ijk]|det(glm)|−1/2Ak;j , (6)

Ã · B̃ ≡ gijAiBj , (Ã× B̃)i ≡ [ijk]|det(glm)|−1/2AjBk . (7)

For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,

Ẽ · B̃ = 0 , (8)

and the electric and magnetic vector fields can be expressed in terms of three scalar functions,
Ψ(r, θ), ω(Ψ), and I(Ψ) as

B̃(r, θ) =
1√

A sin θ

�
Ψ,θ,−

√
∆Ψ,r,

2I
√
Σ

α

�
(9)

Ẽ(r, θ) =
ΩBH − ω

α
√
Σ

�√
∆Ψ,r,Ψ,θ, 0

�
. (10)

ΩBH ≡ a/(r2
BH

+ a2) is the angular velocity of the black hole, rBH ≡ M +
√
M2 − a2 is the

radius of the black hole horizon, ω is the angular velocity of the magnetic field lines, and I
is the poloidal electric current flowing through the circular loop r =const., θ =const. The
poloidal component of Eq. (4) then yields the general relativistic force-free Grad-Shafranov
equation
�
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(Eq. (3.14) of Blandford & Znajek 1977 re-written in our notation). Henceforth, primes will
denote differentiation with respect to Ψ. One sees directly that if we set α = 0 and M = 0
in eq. (11) we obtain

�
Ψ,rr +

1
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r
− 1

r2
cos θ

sin θ
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= −4II � , (12)

which is the well known pulsar equation (Scharlemann & Wagoner 1973). The zeroing of the
expression multiplying the second order derivative term in eq. (11) yields the two singular
‘light surfaces’. When M = α = 0, it yields the standard pulsar light cylinder r sin θ = c/ω.
When M �= 0 and α �= 0, the shape of the outer ‘light surface’ is only asymptotically
cylindrical as θ → 0 (see figure 2 below), and an inner ‘light surface’ appears inside the
ergosphere. It is interesting to note that the outer boundary of the ergosphere corresponds
to the solution of the singularity condition for ω = 0, whereas the inner boundary (the
event horizon) corresponds to the solution of the singularity condition for ω = ΩBH. It is
also interesting to note that the natural ‘radiation condition’ at infinity (energy must flow
outwards along all field lines) requires that

0 ≤ ω ≤ ΩBH (13)

(Blandford & Znajek 1977), and therefore indeed the inner ‘light surface’ lies inside the
ergosphere.

Both Eqs. (11) and (12) contain the two functions, ω(Ψ) and I(Ψ), which must be
determined by the physics of the problem. In the case of an axisymmetric spinning neutron
star, ω is usually taken to be equal to the neutron star angular velocity ΩNS. Notice that in
the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
cylinder where r sin θ = c/ω (Contopoulos, Kazanas & Fendt 1999, Timokhin 2006). In the
case of a spinning black hole, the situation is qualitatively similar but more complicated.
Contrary to a neutron star, the black hole does not have a solid surface, and therefore it

Contopoulos, Kazanas & Papadopoulos 2013
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the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
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• The pulsar light cylinder:    r sinθ = c/ω

• The electric current I(Ψ) must be determined self-
consistently
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• The black hole possesses two light surfaces

• The electric current I(Ψ) must be determined self-
consistently together with the angular velocity of the 
magnetic field ω(Ψ)
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Fig. 1.— Distributions of ω(Ψ) normalized to 0.5/ΩBH (left panel) and 2|I(Ψ)| normalized
to the split monopole value ΩBHΨmax (right panel) for various values of the black hole spin
parameter a/M = 0.6 (solid), 0.7, 0.8, 0.9 (dashed), 0.99 (short dashed), 0.999 (dotted),
0.9999 (dash dotted). Note that both distributions are close (within about 10%) to the
analytical split monopole expressions of Eq. (17) (open circles).
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Reducible rotational BH energy

Black hole spindown

+ magnetic field

E ∼ Mr2
BH

Ω2 ∼ 1053M/M⊙ erg
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Black hole spindown

Ė ∼ Mr2
BH

ΩΩ̇

ĖBZ ∼ −Ψ2
mΩ2 ∼ −Ω2

∼ e−t/τBZ

Bo ∼ 107 G τBZ ∼ 1000 Gyr

BZ simulations in stationary spacetime (fixed BH spin)
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Black hole spindown

Ė ∼ Mr2
BH

ΩΩ̇

ĖBZ ∼ −Ψ2
mΩ2 ∼ −Ω2

Collapsar simulations in stationary spacetime (fixed BH spin)

∼ e−t/τBZ

Bo ∼ 1015 G τBZ ∼ 103 − 104 sec



Black hole spindown

Ė ∼ Mr2
BH

ΩΩ̇

ĖBZ ∼ −Ψ2
mΩ2 ∼ −Ω2

The “orthogonal” GRB: Contopoulos, Nathanail & Pugliese 2014

∼ e−t/τBZ

Bo ∼ 1016 G τBZ ∼ 10− 100 sec
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Summary

• The Cosmic Battery: astrophysical magnetic fields 
generated at the inner edge of the accretion disk. 
The field is held by the inner disk. The return field 
diffuses outward through the outer disk.



Summary

• Black hole and pulsar magnetospheres:

• The “membrane” does not teach us much

• Inner Light Surface

• Electric current sheet          

• Orthogonal emitters



Summary

• GRBs as standard candles in Cosmology?



Thank you


