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OUTLINE:
Theory of NTPA In Magnetic Reconnection

Physical Picture and Assumptions.

Empirical (numerical) Knowledge Base.
Key Ingredients of the Kinetic Equation:

— Acceleration by reconnection electric field;

— Magnetization by reconnected magnetic flux: (power-law slope)
— Trapping in plasmoids: (high-energy cutoff)

Effects of Guide magnetic Field

Conclusions

(Radiative Turbulence)



Physical Picture: Reconnection

* Plasmoid-dominated magnetic reconnection plasmoid chain,
characterized by a plasmoid distribution function F(w) and a
cumulative distribution N(w):

N(w) = / F(w)dw'
 Reconnection may or not be relativistic. w

* Reconnectionrate: E.. =B, B,=¢€V,B,/c=¢€pB,B,
O
Vazehi=e o
h

— “Hot” magnetization: o, = By,2/(4m nh); h = relativistic
enthalpy per particle.
rel. limit: o, >>1 = V,~c
non-rel. limit o, << 1> B,=V, /c~0,% << 1.

— | will also use cold o = By2/(4mt n, mc?)

e But particles under consideration are ultra-relativistic.



Self-similar hierarchical plasmoid chain
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Dimensionality

Real world is 3D.

However, recent PIC simulations of relativistic pair-plasma
reconnection (Werner & Uzdensky 2017, also Sironi & Spitkovsky
2014, Guo et al. 2015) show that 2D and 3D give the same NTPA.
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(However, for non-relativistic electron-ion plasma reconnection,
2D and 3D NTPA may be different, see Dahlin et al. 2015-2017.)
Thus here we will consider 2D reconnection.

Direction perpendicular to current sheet: particles confined to the
sheet by reconnecting magnetic field = consider only motion
along the sheet.



Basic Picture

While they are unmagnetized, energetic particles are
accelerated by the main reconnection electric field E ..

This steady acceleration proceeds until a particle is
captured by the reconnected magnetic field.

Reconnected magnetic field is bimodal:
~ B, ¥ e B, ™~ 0.1B,in inter-plasmoid current layers;

~ B, in circularized plasmoids [with size distribution F(w)]

We will treat magnetization in B, and trapping in
plasmoids separately.



Empirical Numerical Properties of
Reconnection-driven relativistic NTPA

Power-law index p High-energy cutoff
* p scales with o, as (Werner et al. 2016)
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pair plasma: electron-ion plasma:

Two high-energy cutoffs:
Werner et al. 2016 Werner et al. 2018

- exp(- V/Vc1); Y™ 40,
- eXp['(V/ch)z]; Y~ 0.1 L/po

. . (Po=m,c*/e By)
(guide magnetic field suppresses NTPA, see below)



High-Energy Power-Law Cutoff

(Werner, Uzdensky, Cerutti, Nalewajko, Begelman, ApJL 2016)
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Why is there a y_ = 40 cutoff?

e Cutoff comes from small laminar elementary inter-
plasmoid layers at the bottom of the plasmoid
hierarchy (marginally stable to tearing).

tw,=198

* Particles are accelerated in these layers but then
become trapped inside plasmoids.

* Cutoff:y, =eE, .l /mc*=0.1eB,!//mc*= 0.11]/p,.
* Layers are marginally stable to tearing > [~ 100 é.

0 100 200

Cerutti et al. 2011

* Layer thickness: & = p (<y>) =<y>p, = (0 /3) p,.
* Thus,!/p,=1006/p,=3006 => y,=30.

Further particle acceleration is possible, e.g., in
Zenitani & Hoshino 2001 plasmoid mergers, but this 2nd-stage reconnection

acceleration occurs with lower sigma and smaller L.
(pg=m, c*/e B)

o = B,2/(4t nmc?)
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Relativistic e-i reconnection: Key PIC Sims Results |

Werner et al., MNRAS 2018; arXiv:1612.04493  Energy partitioning between

Systematic 2D PIC study: electrops _a“d lons
(no guide field, m/m_=1836) (useful prescription fgr GRMHD
L0 models of BH accretion flows)
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Relativistic e-i reconnection: Key PIC Sims Results Il

Particle Acceleration: N SR
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Kinetic Equation

B f (y,t) = —05 (Ve f) - Tmii’,fﬁﬂ - T{r%

Key Ingredients:
* Acceleration by main reconnection electric field:

;Yacc = el;'recc/"nec2 — €,BAQO
- independent of y ...
 Magnetization by reconnected B-field (--> power-law):

Tmag () ~ mag/C ~ 6_1790_1

* Trapping by large [w > p,(y)] plasmoids (= cutoff):
T,, controlled by plasmoid distribution function (below)



Steady State Kinetic Equation

e Since ya Is independent of y, we get

WS
“dy T ()
* Solution: B 1 dry
f(v)_cexp< Hace /Tv))
1 1 1
where — 5= +

T(Y)  Tmagn(Y)  Ttrap(7)



Magnetization by Reconnected Field and
NTPA power law

Energetic particle passes right through small plasmoids.

Distance a particle travels before being magnetized

lmag(V) NpL (VI B]_) = (BO/B]_) pL (VI BO) = 8_1 pO V

magnetization time-scale Tmag(7) ~ Lmag /¢ ~ € yQ5 !

Balance magnetization with acceleration in kinetic egn:

power-law solution fly) ~ yP
I = 1 _ 1 —+ Oon
power-law index: p=plon) ~ z- = -

— ultra-rel (0,>>1): p =2 const (cf. Zenitani & Hoshino 2001)
— non-rel. case (0,>>1): p ~ 0,2 (c.f., Werner et al. 2018)



Plasmoid Chain I: single power-law

* Energetic particles can be trapped in large
plasmoids when w =w(y) = p,(y) =pgV  (pe=m.c¥/eB)

* High-energy cutoff is controlled by plasmoid
distribution function F(w) = - dN/dw.

* T, =Ay(w)/c

where A, (w) is separation between plasmoids of size w:
* A (w) =L/N(w)

* Thust, =L/c N(w)



Single-Power-law plasmoid chain

* Consider for illustration: F(w)~w?® forw<w,_,

e Cumulative distribution: N(w) ~(w/w__ )¢

[where N(w,,...) =1]

Tty (1) ~ £ N )] ~ (2 ) a1

“Ymax

Max

Where vmax = Wmax/pO

* Special case a=2: t,.. ~V (same as for magnetization - later)

trap
* Trapping rate overtakes magnetization at
1

Wmax | &2
Ye — Ymax el .

* Forw,__,, ~€L: V. ~ V.



Establishing Cutoff

* Balancing acceleration against trapping in plasmoids:

2—«
Wmax Y
o ~es| i ()|
* Special case a ~ 1 (ignoring log-corrections)

po 1
f(v) ~ exp [—f 7] = exp(—7/7e1)
A€
_ L . Wnax _
* where 7Ye1 = fac P Ba " (canbe<y, ., if B,<1)
e Special case a=2: no cutoff but another power-law: 1 Weax

b= €efa L
— Forw,_ ~¢€L: p~B,*! (~same as without plasmoids)
— Combined with magnetization: - steeper (by X2) power law.



Plasmoid Chain Il:

Realistic double-power-law

Real simulations show double-power-law plasmoid distributions
(Loureiro et al. 2012, Huang et al. 2013, Sironi et al. 2016, Petropoulou et al. 2018)

Lot F ~ w , W < We
é F ~ 'lU_a2 s We < W < Wmax
% 10_2? W l—aq
107° ¢ We
g o L W l—a9
1073 107 10° N(w > ’lUc) — ( )
1 Wmax
We @y —2 qu 1 . ~ ~
— _ ost likely: a,=1, a,=2
For a.=1: Important Question:
O al Ycutoff = Ve ( w )N vc

What controls w_?

If a,= 2: possible 2"? (steeper) power law above spectral break at y,
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Important Question:
What controls w_?

Consider large-system regime: L >> 6 ~ <p> ~ 0 p,

The plasmoid distribution break size w_may be
anywhere between microscopic ~ o p, and
macroscopic ~ L.

If w_~0op,, theny .~ g, e.g., vy .= 40 (Werner et al. 2016)

If w.~ L, theny_~ L/p, -- “extreme” (Hillas) acceleration limit.



Effect of Guide Magnetic Field
(Werner & Uzdensky 2017 ApJL)

Partlcle spectra for different B,/B,:
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Particle acceleration is negatively affected by strong gwde field.
Explanation: Guide field’s inertia: Guide-field needs to be advected
out of the layer with the plasma, so guide field’s inertia contributes
Bg22/4n to the enthalpy in the denominator of o,;

O, ot = Bo’/(Bg,> + 4m nh)

-- reduces in-plane V,, hence recn. outflow speed, hence E,__

D. Uzdensky 5/8/2018 20




Conclusions

Relativistic Nonthermal Particle Acceleration (NTPA) in
reconnection is an interplay of:

— steady acceleration by reconnection electric field;
checked by “escape” from acceleration zone:

(1) magnetization by general reconnected magnetic field
B, ~ 0.1 B, 2 power-law index

p ~ (Ere(;/Bl)-1 ~ 1/ BA ~ [1+0h)/0h]1/2
- (2) capture/trapping by plasmoids with w ~ p,(y) =y pg
- high-energy cutoff.

- Cutoff depends on plasmoid-distribution function, e.g., for a=1
it is simple exponential with y_=w,__./p,.

- Realistic double-power-law F(w): cutoff at break size w_ and
- possible steeper power law (if a,=2) above w_
* Guide field’s inertia B,,*/4mt adds to enthalpy, reduces effective oy,



