

Relativistic Nonthermal Particle Acceleration in Magnetic Reconnection

Dmitri Uzdensky

(University of Colorado Boulder)

Thanks to Univ. Colorado Theoretical Plasma Astrophysics Group:

- Greg Werner
- Vladimir Zhdankin
- Mitch Begelman

(support by NSF, NASA, DOE) 3rd Purdue Workshop, May 8, 2018

OUTLINE:

Theory of NTPA In Magnetic Reconnection

- Physical Picture and Assumptions.
- Empirical (numerical) Knowledge Base.
- Key Ingredients of the Kinetic Equation:
 - Acceleration by reconnection electric field;
 - Magnetization by reconnected magnetic flux: (power-law slope)
 - Trapping in plasmoids: (*high-energy cutoff*)
- Effects of Guide magnetic Field
- Conclusions
- (Radiative Turbulence)

Physical Picture: Reconnection

- Plasmoid-dominated magnetic reconnection plasmoid chain, characterized by a plasmoid distribution function F(w) and a cumulative distribution N(w): $N(w) = \int_{0}^{w_{\text{max}}} F(w')dw'$
- Reconnection may or not be relativistic.
- Reconnection rate: $E_{rec} = \beta_{rec} B_0 = \epsilon V_A B_0/c = \epsilon \beta_A B_0$

$$V_A = c\beta_A = c\frac{\sqrt{\sigma_h}}{\sqrt{1+\sigma_h}}$$

- "Hot" magnetization: $\sigma_h = B_0^2/(4\pi nh)$; h = relativistic enthalpy per particle.

rel. limit: $\boldsymbol{\sigma}_{h} \gg 1 \rightarrow V_{A} \sim c$ non-rel. limit $\boldsymbol{\sigma}_{h} \ll 1 \rightarrow \beta_{A} = V_{A} / c \sim \boldsymbol{\sigma}_{h}^{1/2} \ll 1$.

- I will also use cold $\sigma = B_0^2/(4\pi n_b mc^2)$
- But particles under consideration are ultra-relativistic.
 D. Uzdensky

Self-similar hierarchical plasmoid chain

Bhattacharjee et al. 2009

Two Phases of Reconnected Magnetic Field:

- of order $B_1 = \epsilon B_0 = 0.1 B_0$ in current sheets
- of order B_0 in plasmoids

Dimensionality

- Real world is 3D.
- However, recent PIC simulations of relativistic pair-plasma reconnection (Werner & Uzdensky 2017, also Sironi & Spitkovsky 2014, Guo et al. 2015) show that 2D and 3D give the same NTPA.

- (However, for non-relativistic electron-ion plasma reconnection, 2D and 3D NTPA may be different, see Dahlin et al. 2015-2017.)
- Thus here we will consider 2D reconnection.
- Direction perpendicular to current sheet: particles confined to the sheet by reconnecting magnetic field \rightarrow consider only motion along the sheet. 5 5/8/2018

Basic Picture

- While they are unmagnetized, energetic particles are accelerated by the main reconnection electric field E_{rec}.
- This steady acceleration proceeds until a particle is captured by the reconnected magnetic field.
- Reconnected magnetic field is bimodal:
 ~ B₁ ~ ε B₀ ~ 0.1 B₀ in inter-plasmoid current layers;
 ~ B₀ in circularized plasmoids [with size distribution F(w)]
- We will treat magnetization in B₁ and trapping in plasmoids separately.

Empirical Numerical Properties of Reconnection-driven relativistic NTPA

Power-law index p

• *p* scales with σ_h as

pair plasma: Werner et al. 2016

electron-ion plasma: Werner et al. 2018

High-energy cutoff

(Werner et al. 2016)

Two high-energy cutoffs:

- $exp(-\gamma/\gamma_{c1}); \gamma_{c1} \sim 4\sigma$,
- exp[- $(\gamma/\gamma_{c2})^2$]; $\gamma_{c2} \sim 0.1 L/\rho_0$

 $(\rho_0 = m_e c^2/e B_0)$

(guide magnetic field suppresses NTPA, see below)

D. Uzdensky

High-Energy Power-Law Cutoff

(Werner, Uzdensky, Cerutti, Nalewajko, Begelman, ApJL 2016)

$$f(\gamma) = \frac{dN}{d\gamma} \propto \gamma^{-\alpha} \exp\left(-\gamma/\gamma_{c1} - \gamma^2/\gamma_{c2}^2\right)$$

Two high-energy cutoffs:

- exp (- γ/γ_{c1}); $\gamma_{c1} \sim 4\sigma$, - independent of *L*; $\gamma_{c1} \sim 10 < \varepsilon$
- exp [-(γ/γ_{c2})²]; γ_{c2}~ 0.1 L/ρ₀
- independent of σ .

Why is there a $\gamma_c \approx 4\sigma$ cutoff?

Zenitani & Hoshino 2001

$$(\rho_0 = m_e c^2 / e B_0)$$

 $\sigma = B_0^2/(4\pi \text{ nmc}^2)$

- Cutoff comes from small laminar *elementary interplasmoid layers* at the bottom of the plasmoid hierarchy (marginally stable to tearing).
- Particles are accelerated in these layers but then become **trapped inside plasmoids**.
- Cutoff: $\gamma_c = e E_{rec} l / m_e c^2 \approx 0.1 e B_0 l / m_e c^2 = 0.1 l / \rho_0$.
- Layers are marginally stable to tearing $\rightarrow l \sim 100 \delta$.
- Layer thickness: $\boldsymbol{\delta} \approx \rho (\langle \gamma \rangle) = \langle \gamma \rangle \rho_0 \approx (\boldsymbol{\sigma} / \boldsymbol{3}) \rho_0$.
- Thus, $l/\rho_0 \approx 100 \ \delta/\rho_0 \approx 30 \ \sigma \implies \gamma_0 \equiv 3 \ \sigma$.

Further particle acceleration is possible, e.g., in plasmoid mergers, but this 2nd-stage reconnection acceleration occurs with lower sigma and smaller *L*.

Relativistic *e-i* reconnection: Key PIC Sims Results I

5/8/2018 times more energy than electrons.

Relativistic e-i reconnection: Key PIC Sims Results II

Electron power-law index p and cutoff γ_c :

Observed blazar $p_{\rm e}$ ~2-3 imply $\sigma_{\rm i}$ ~1, consistent with expectations from MHD jet models.

5/8/2018

11

Kinetic Equation

$$\partial_t f(\gamma,t) = -\partial_\gamma (\dot{\gamma}_{
m acc} f) - rac{f(\gamma)}{ au_{
m magn}(\gamma)} - rac{f(\gamma)}{ au_{
m tr}(\gamma)}$$

Key Ingredients:

• Acceleration by main reconnection electric field:

$$\dot{\gamma}_{\rm acc} = eE_{
m rec}c/m_ec^2 = \epsilon\beta_A\Omega_0$$

- independent of $\boldsymbol{\gamma}$...
- Magnetization by reconnected B-field (--> power-law):

$$au_{\mathrm{mag}}(\gamma) \sim \ell_{\mathrm{mag}}/c \sim \epsilon^{-1} \gamma \Omega_0^{-1}$$

• Trapping by large $[w > \rho_L(\gamma)]$ plasmoids (\rightarrow cutoff): τ_{tr} controlled by plasmoid distribution function (below)

Steady State Kinetic Equation

• Since $\dot{\gamma}_{acc}$ is independent of γ , we get

$$\dot{\gamma}_{\rm acc} \frac{\mathrm{d}f}{\mathrm{d}\gamma} = -\frac{f(\gamma)}{\tau(\gamma)}$$
• Solution:

$$f(\gamma) = C \exp\left(-\frac{1}{\dot{\gamma}_{\rm acc}} \int \frac{\mathrm{d}\gamma}{\tau(\gamma)}\right)$$

where $\frac{1}{\tau(\gamma)} = \frac{1}{\tau_{magn}(\gamma)} + \frac{1}{\tau_{trap}(\gamma)}$

Magnetization by Reconnected Field and NTPA power law

- Energetic particle passes right through small plasmoids.
- Distance a particle travels before being magnetized

 $l_{mag}(\gamma) \sim \rho_L(\gamma, B_1) = (B_0/B_1) \rho_L(\gamma, B_0) = \epsilon^{-1} \rho_0 \gamma$

- magnetization time-scale $\tau_{
 m mag}(\gamma) \sim \ell_{
 m mag}/c \sim \epsilon^{-1} \gamma \Omega_0^{-1}$
- Balance magnetization with acceleration in kinetic eqn:
- power-law solution $f(\gamma) \sim \gamma^{-p}$
- power-law index: $p = p(\sigma_h) \sim \frac{1}{\beta_A} = \sqrt{\frac{1 + \sigma_h}{\sigma_h}}$
 - ultra-rel (σ_h >>1): p \rightarrow const (cf. Zenitani & Hoshino 2001)
 - non-rel. case (σ_h >>1): p ~ $\sigma_h^{-1/2}$ (c.f., Werner et al. 2018)

Plasmoid Chain I: single power-law

- Energetic particles can be trapped in *large* plasmoids when $w = w(\gamma) = \rho_L(\gamma) = \rho_0 \gamma$ ($\rho_0 = m_e c^2/e B_0$)
- **High-energy cutoff** is controlled by plasmoid distribution function F(w) = dN/dw.
- $\tau_{tr} = \lambda_{pl}(w)/c$

where $\lambda_{pl}(w)$ is separation between plasmoids of size w:

- $\lambda_{pl}(w) = L/N(w)$
- Thus $\tau_{tr} = L/c N(w)$

Single-Power-law plasmoid chain

- Consider for illustration: $F(w) \sim w^{-\alpha}$ for $w < w_{max}$
- Cumulative distribution: N(w) $\sim (w/w_{max})^{1-\alpha}$ [where N(w_{max}) =1]

$$\tau_{\rm trap}^{-1}(\gamma) \sim \frac{c}{L} N[w(\gamma)] \sim \frac{c}{L} \left(\frac{\gamma}{\gamma_{\rm max}}\right)^{1-\alpha}, \quad \alpha \neq 1$$

where $\gamma_{max} = w_{max} / \rho_0$

- Special case $\alpha = 2$: $\tau_{trap} \sim \gamma$ (same as for magnetization later)
- Trapping rate overtakes magnetization at

$$\gamma_c = \gamma_{\max} \left(\frac{w_{\max}}{\epsilon L} \right)^{\frac{1}{\alpha - 2}}$$

• For $w_{\text{max}} \sim \varepsilon L$: $\gamma_c \sim \gamma_{\text{max}}$

Establishing Cutoff

• Balancing acceleration against trapping in plasmoids:

$$f(\gamma) \sim \exp\left[-\frac{w_{\max}}{\epsilon\beta_A L(2-\alpha)} \left(\frac{\gamma}{\gamma_{\max}}\right)^{2-\alpha}\right]$$

• Special case $\alpha \sim 1$ (ignoring log-corrections)

$$f(\gamma) \sim \exp\left[-\frac{\rho_0}{L}\frac{1}{\beta_A\epsilon}\gamma\right] = \exp(-\gamma/\gamma_{c1})$$

• where
$$\gamma_{c1} \equiv \beta_A \epsilon \frac{L}{\rho_0} \simeq \beta_A \frac{w_{\max}}{\rho_0}$$
 (can be < γ_{\max} , if β_A < 1)

- Special case $\alpha = 2$: no cutoff but another power-law: $p \simeq \frac{1}{\epsilon \beta_A} \frac{w_{\max}}{L}$
 - For $w_{max} \sim \epsilon L$: $p \sim \beta_A^{-1}$ (~same as without plasmoids)
 - Combined with magnetization: \rightarrow steeper (by x2) power law.

<u>Plasmoid Chain II:</u> <u>Realistic double-power-law</u>

 Real simulations show double-power-law plasmoid distributions (Loureiro et al. 2012, Huang et al. 2013, Sironi et al. 2016, Petropoulou et al. 2018)

If $\alpha_2 \approx 2$: possible 2nd (steeper) power law above spectral break at γ_c

Important Question: What controls w_c?

- Consider large-system regime: $L >> \delta \sim \langle \rho \rangle \sim \sigma \rho_0$
- The plasmoid distribution break size w_c may be anywhere between microscopic ~ σ ρ₀ and macroscopic ~ L.
- If $w_c \sim \sigma \rho_0$, then $\gamma_c \sim \sigma$, e.g., $\gamma_c \approx 4\sigma$ (Werner et al. 2016)
- If $w_c \sim L$, then $\gamma_c \sim L/\rho_0$ -- "extreme" (Hillas) acceleration limit.

Effect of Guide Magnetic Field

(Werner & Uzdensky 2017 ApJL)

Particle spectra for different B_z/B_0 :

Particle acceleration is negatively affected by strong guide field. <u>Explanation</u>: Guide field's *inertia*: Guide-field needs to be advected out of the layer with the plasma, so guide field's inertia contributes $B_{gz}^2/4\pi$ to the enthalpy in the denominator of σ_h :

 $\sigma_{\rm h,eff} = B_0^2 / (B_{\rm gz}^2 + 4\pi nh)$

-- reduces in-plane V_A, hence recn. outflow speed, hence E_{rec}

Conclusions

Relativistic Nonthermal Particle Acceleration (NTPA) in reconnection is an interplay of:

steady acceleration by reconnection electric field;

checked by "escape" from acceleration zone:

- (1) magnetization by general reconnected magnetic field $B_1 \sim 0.1 B_0 \rightarrow power-law index$

p ~ (E_{rec}/B_1)⁻¹ ~ 1/ β_A ~ [1+ σ_h)/ σ_h]^{1/2}

- (2) capture/trapping by plasmoids with $w \sim \rho_L(\gamma) = \gamma \rho_{0.}$ \rightarrow high-energy cutoff.
- Cutoff depends on plasmoid-distribution function, e.g., for α =1 it is simple exponential with $\gamma_c = w_{max}/\rho_0$.
- Realistic double-power-law F(w): cutoff at break size w_c and
- possible steeper power law (if $\alpha_2 \approx 2$) above w_c
- Guide field's inertia $B_{gz}^2/4\pi$ adds to enthalpy, reduces effective σ_h