Magnetic Reconnection in Accretion Disks and Coronae

Lorenzo Sironi (Columbia) WoRPA 2018, May 8th 2018

with: D. Ball, A. Beloborodov, A. Chael, R. Narayan, F. Ozel, M. Rowan

(1). Magnetized disks and coronaeof collisionless accretion flows (likeSgr A* in our Galactic Center).

• Trans-relativistic reconnection $(\sigma \sim 1)$, electron-proton plasma.

(2). Magnetized coronae in bright accreting binaries (Cyg X-1).

• Trans- and ultra-relativistic reconnection (σ ~10) in strong radiation fields, pair-dominated.

Where reconnection?

Global current sheets

from accreting field loops

(Parfrey, Giannios & Beloborodov 2015)

Where reconnection?

Global current sheets

from accreting field loops

(Parfrey, Giannios & Beloborodov 2015)

Local current sheets

$\mathsf{MRI} \to \mathsf{turbulence} \to \mathsf{reconnection}$

[see Luca Comisso's talk]

1. Trans-relativistic reconnection in low-luminosity accretion flows

v=2.2e+11Hz $\lambda=1.3e+00mm$ [expected]

- The Chandra X-ray telescope allows to probe the properties of the gas around the BH, on scales of order ~10⁵ gravitational radii.
- The Event Horizon Telescope (EHT) is going to probe the gas in the immediate vicinity of the BH.

Thermal and non-thermal electrons

Sgr A* : spectrum

• Thermal trans-relativistic electrons (with $T_e/T_p \sim 0.3$) are invoked to explain the peak of Sgr A* spectrum.

• Non-thermal electrons are invoked to explain the spectrum and time variability of X-ray flares from Sgr A* (Ponti+ 17).

Reconnection sites in Sgr A*

• The plasma around reconnection layers spans a range of beta and sigma.

 $\sigma = \frac{B_0^2}{4\pi w}$

Reconnection current sheets

Flow dynamics and particle heating

 σ =0.1 β =0.01, realistic mass ratio

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

Dependence on beta

 σ =0.1 β =0.01, realistic mass ratio

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

σ =0.1 β =2, realistic mass ratio

• High beta: smooth outflow, no secondary plasmoids.

Inflows and outflows

• Both the inflow speed and the outflow speed decrease at high beta (relative to the Alfven speed), regardless of the temperature ratio.

Characterization of heating

- Blue: upstream region, starting above the current sheet.
- Red: upstream region, starting below the current sheet.
- White/yellow: mix of blue and red particles \rightarrow downstream region.

and then separate adiabatic and irreversible contributions.

Electron heating efficiency

• Electrons are always heated less then protons (for $\sigma \ll 1$, the ratio is ~0.2).

- Comparable heating efficiencies:
 - at high beta, when both species already start relativistically hot.
 - in ultra-relativistic ($\sigma \gg 1$) reconnection.

Electron heating as a subgrid model

GRMHD simulation by A. Chael

Magnetic Reconnection

Landau Damped Cascade

- Electrons always colder than protons.Disk electrons are hotter than in Howes' prescription.
- Electrons hotter than protons in the jet.
- Disk electrons are colder than in Rowan's prescription.

Particle acceleration

Electron and proton acceleration

σ =0.3 β =0.0003, realistic mass ratio

Protons: non-thermal tail only after the formation of the boundary island.

Electrons: well developed power law tail since early times.

Dependence on beta

- Lower beta:
- fragmentation into secondary
- hard electron spectra.

- Higher beta:
- smooth layer.
- steep electron spectra (nearly Maxwellian).

Dependence on beta and sigma

- Harder slope for higher sigma (at fixed beta); see also Werner+18.
- Harder slope for lower beta (at fixed sigma).

Electron acceleration mechanism

σ=0.3 β=0.0003

(Ball, LS & Ozel 2018)

Electron injection in reconnection

• Many more X-points (E>B) in low beta than in high beta.

1. Electron injection at X-points (E>B).

2. More X-points for lower beta.

3. Acceleration is more efficient / harder slopes at lower beta.

The special case of $\beta \sim \beta_{max} = 1/(4\sigma)$

For high beta, yet below $\beta_{max} \sim 1/(4\sigma)$, the electron spectrum is quasi-Maxwellian.

A power law emerges in the electron and proton spectra at $\beta_{max} \sim 1/(4\sigma)$, when both species start relativistically hot.

The special case of $\beta \sim \beta_{max} = 1/(4\sigma)$ $\sigma = 1$ $\beta = 0.16$

First kick in energy at the moment of interaction with the smooth outflow.

Second kick in a Fermi-like process between the outflow and the boundary island.

2. Reconnection in strong radiation fields

Accreting X-ray binaries

 Canonical interpretation: thermal Comptonization by hot plasma in a "corona" with electron temperature of ~100 keV.

• Alternative (Beloborodov 2017): bulk Comptonization by a radiatively-cooled plasmoid chain.

The plasmoid chain

[[]see Maria Petropoulou's talk]

⁽LS, Giannios & Petropoulou 16)

Plasmoid space-time tracks

We can follow individual plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center (at a rate ~0.1 *c*) while moving at non-relativistic speeds.

 Then, they accelerate outwards approaching the Alfven speed ~ *c*.

Inverse Compton losses

The particles scatter off a prescribed isotropic photon field in the Thomson regime:

$$P_{IC} = \frac{4}{3}\sigma_T c \gamma^2 U_\star$$

In the ultra-relativistic limit, the Compton drag force is

$$\vec{f} = -P_{IC}\frac{\vec{v}}{c^2}$$

We parameterize the radiation energy density via a critical Lorentz factor γ_{cr} (balancing acceleration with IC losses):

$$eEc \sim \frac{4}{3}\sigma_T c \gamma_{cr}^2 U_\star \qquad E \sim 0.1B$$

What is the effect on particle acceleration and plasmoid dynamics? Fix σ =10 and composition (electron-positron), vary γ_{cr} .

Weak IC losses

Weak IC losses

No difference in the inflow speed, outflow 4-velocity or plasmoid energy content.

The high-energy cutoff of the particle spectrum recedes to lower energies, due to IC cooling (see Werner's talk).

Moderate IC losses

No cooling

Moderate IC losses

No difference in the inflow speed and maximum outflow 4-velocity.

Effect of Compton drag depends on plasmoid size:

 \rightarrow small plasmoids are unaffected, intermediate plasmoids are decelerated).

(LS & Beloborodov

Strong IC losses

• No appreciable difference in the inflow speed (i.e., the reconnection rate).

• Strong suppression in the maximum outflow 4-velocity (Compton drag).

- (1). Magnetized disks and coronae of collisionless accretion flows (like Sgr A* in our Galactic Center).
- Trans-relativistic reconnection (σ ~1), electron-proton plasma.
- Electrons are heated less than protons (the heating ratio is ~0.2 at low sigma and beta).
- The power-law slope of accelerated electrons is harder for higher sigma and/or lower beta. Electrons are injected at X-points.

(2). Magnetized coronae in bright accreting binaries (Cyg X-1).

- Trans- and ultra-relativistic reconnection $(\sigma \sim 10)$ in strong radiation fields, pair-dominated.
- Compton drag can decelerate intermediate and large plasmoids, and in extreme cases slow down the whole outflow.
- Bulk Compton off the plasmoid chain can reproduce the hard state of accreting binaries.