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Outline

(1). Magnetized disks and coronae 
of collisionless accretion flows (like 
Sgr A* in our Galactic Center).

• Trans-relativistic reconnection 
(σ~1), electron-proton plasma.
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(2). Magnetized coronae in bright 
accreting binaries (Cyg X-1).

• Trans- and ultra-relativistic 
reconnection (σ~10) in strong 
radiation fields, pair-dominated.
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Where reconnection?

from accreting field loops
Global current sheets

(Parfrey, Giannios & Beloborodov 2015)



Where reconnection?

from accreting field loops
Global current sheets Local current sheets

MRI → turbulence → reconnection

[see Luca Comisso’s talk]
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(Parfrey, Giannios & Beloborodov 2015)



1. Trans-relativistic reconnection in 
low-luminosity accretion flows



Sgr A*, our neighbor

•  The Chandra X-ray telescope allows to 
probe the properties of the gas around 
the BH, on scales of order ~105 
gravitational radii.

X-rays

•  The Event Horizon Telescope 
(EHT) is going to probe the gas in 
the immediate vicinity of the BH.

[expected]



Thermal and non-thermal electrons
Sgr A* : spectrum

• Thermal trans-relativistic electrons (with Te/Tp~0.3) are invoked to explain 
the peak of Sgr A* spectrum.

• Non-thermal electrons are invoked to explain the spectrum and time 
variability of X-ray flares from Sgr A* (Ponti+ 17).



Reconnection sites in Sgr A*

GRMHD
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• The plasma around reconnection layers 
spans a range of beta and sigma.

(Ball+ 17)
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Flow dynamics and particle heating



Dependence on beta
σ=0.1  β=0.01, realistic mass ratio

Density

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

(Rowan, LS & Narayan 2017)



Dependence on beta

σ=0.1  β=2, realistic mass ratio

(Rowan, LS & Narayan 2017)

Density

Density

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

• High beta: smooth outflow, no secondary plasmoids.

(Rowan, LS & Narayan 2017)

σ=0.1  β=0.01, realistic mass ratio



Inflows and outflows

Inflow

• Both the inflow speed and the outflow speed decrease at high beta 
(relative to the Alfven speed), regardless of the temperature ratio.

(Rowan, LS & Narayan 2017)
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Characterization of heating
• Blue: upstream region, starting above the current sheet.

• Red: upstream region, starting below the current sheet.

• White/yellow: mix of blue and red particles → downstream region.

Upstream Downstream

Define total electron heating as

alternatively, 

and then separate adiabatic and irreversible contributions.

θ=dimensionless temperature.

υ=internal energy per 
unit rest mass.

(Shay et al. 2014)



Electron heating efficiency
Electron-to-overall heating ratio

• Electrons are always heated less then protons (for σ≪1, the ratio is ~0.2).

• Comparable heating efficiencies:
- at high beta, when both species already start relativistically hot.
- in ultra-relativistic (σ≫1) reconnection.

(Rowan, LS & 
Narayan 2017)
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The curves extend 
up to βmax~1/(4σ)



Electron heating as a subgrid model
GRMHD simulation by A. Chael

• Electrons always colder than protons.
• Disk electrons are hotter than in 
Howes’ prescription.

• Electrons hotter than protons in the jet.
• Disk electrons are colder than in 
Rowan’s prescription.

(Rowan, LS & Narayan 2017) (Howes+ 2008)

(Chael+2018)



Particle acceleration



Electron and proton acceleration
σ=0.3  β=0.0003, realistic mass ratio

Upstream

Downstream

Thick: downstream

Thick: downstreamElectrons: well developed power 
law tail since early times.

Protons: non-thermal tail only after 
the formation of the boundary island.

Time →

Time →



Dependence on beta

Electrons
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(Ball, LS & Ozel 2018)

• Lower beta: 

- fragmentation into secondary 
plasmoids.

- hard electron spectra.

• Higher beta: 

- smooth layer.

- steep electron spectra (nearly 
Maxwellian).γ-1

(γ
-1

) 
dn

/d
γ



=
8⇡n0kBT

B2
0

dn/dγ∝γ-p 

p

Dependence on beta and sigma

• Harder slope for higher sigma (at fixed beta); see also Werner+18.

• Harder slope for lower beta (at fixed sigma).
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(Ball, LS & 
Ozel 2018)



     σ=0.3      β=0.0003

Electron acceleration mechanism
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Two acceleration phases: 
(a) at the X-point; 

(b) in between merging islands

(Ball, LS & Ozel 2018)



Electron injection in reconnection

• Many more X-points (E>B) 
in low beta than in high beta.

X-point statistics

σ=0.3

β=0.001

β=0.006β=0.03

(Ball, LS & Ozel, 
in prep)

(E-B)/B0

Moderate beta

Low beta

1. Electron injection at X-points (E>B).

2. More X-points for lower beta.

3. Acceleration is more efficient / 
harder slopes at lower beta.
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The special case of β~βmax=1/(4σ)

For high beta, yet below βmax~1/(4σ), the electron spectrum is quasi-Maxwellian.

A power law emerges in the electron and proton spectra at βmax~1/(4σ), when 
both species start relativistically hot.

Electrons

(Ball, LS & Ozel 2018)

Time →



The special case of β~βmax=1/(4σ)

First kick in energy at the moment of interaction with the smooth outflow.

Second kick in a Fermi-like process between the outflow and the boundary island.
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2. Reconnection in strong radiation fields



Accreting X-ray binaries

(McConnell+2002)

• Canonical interpretation: thermal Comptonization by hot plasma in a “corona” 
with electron temperature of ~100 keV. 
• Alternative (Beloborodov 2017): bulk Comptonization by a radiatively-cooled 
plasmoid chain.

hard state



The plasmoid chain
Density

Magnetic energy

Kinetic energy

Outflow 4-velocity

(LS, Giannios & Petropoulou 16)

L~1600 c/ωp electron-positron

B0

ou
tfl

ow

ou
tfl

ow

[see Maria Petropoulou’s talk]



Plasmoid space-time tracks
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We can follow individual 
plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center 
(at a rate ~0.1 c) while moving 
at non-relativistic speeds.

• Then, they accelerate 
outwards approaching the 
Alfven speed ~ c.

(LS, Giannios & Petropoulou 16)

σ=10    L~1600 c/ωp     electron-positron

x=ctlabx=-ctlab
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Inverse Compton losses
The particles scatter off a prescribed isotropic photon field in the Thomson regime: 
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We parameterize the radiation energy density via a critical Lorentz factor γcr 
(balancing acceleration with IC losses):

In the ultra-relativistic limit, the Compton drag force is

What is the effect on particle acceleration and plasmoid dynamics?

Fix σ=10 and composition (electron-positron), vary γcr.



Weak IC losses
No cooling γcr=128=12.8σ

Density

Magnetic energy

Kinetic energy

Inflow speed

Outflow 4-velocity

Outflow 4-velocity



Weak IC losses
No difference in the inflow speed, outflow 4-velocity or plasmoid energy content.

The high-energy cutoff of the particle spectrum recedes to lower energies, 
due to IC cooling (see Werner’s talk).
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γcr=256

γcr=128

γcr=64

(LS & Beloborodov 18, in prep)
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Moderate IC losses
γcr=16=1.6σNo cooling

Density

Magnetic energy

Kinetic energy

Inflow speed

Outflow 4-velocity

Outflow 4-velocity
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Moderate IC losses
No difference in the inflow speed and maximum outflow 4-velocity.

Effect of Compton drag depends on plasmoid size: 

Plasmoid width w [L]
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→ small plasmoids 
are unaffected, 
intermediate 
plasmoids are 
decelerated).

Uncooled upper lim
it

(LS & Beloborodov 
18, in prep)

γcr=32



Strong IC losses
γcr=4=0.4σNo cooling

Density

Magnetic energy
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Strong IC losses

• No appreciable difference in the inflow speed (i.e., the reconnection rate).

• Strong suppression in the maximum outflow 4-velocity (Compton drag).
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Summary

(2). Magnetized coronae in bright 
accreting binaries (Cyg X-1).

• Trans- and ultra-relativistic reconnection 
(σ~10) in strong radiation fields, pair-
dominated.
- Compton drag can decelerate intermediate 
and large plasmoids, and in extreme cases 
slow down the whole outflow.
- Bulk Compton off the plasmoid chain can 
reproduce the hard state of accreting binaries.
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(1). Magnetized disks and coronae of 
collisionless accretion flows (like Sgr A* 
in our Galactic Center). 

• Trans-relativistic reconnection (σ~1), 
electron-proton plasma.
- Electrons are heated less than protons (the 
heating ratio is ~0.2 at low sigma and beta).
- The power-law slope of accelerated 
electrons is harder for higher sigma and/or 
lower beta. Electrons are injected at X-points.
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