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(1). Magnetized disks and coronae
of collisionless accretion flows (like
Sgr A* in our Galactic Center).

e Trans-relativistic reconnection
(0~1), electron-proton plasma.

Hole

Disk

(2). Magnetized coronae in bright
accreting binaries (Cyg X-1).

* Trans- and ultra-relativistic
reconnection (0~10) in strong
radiation fields, pair-dominated.



Where reconnection?

Global current sheets

from accreting field loops

(Parfrey, Giannios & Beloborodov 2015)



Where reconnection?

from accreting field loops MRI — turbulence — reconnection

(Parfrey, Giannios & Beloborodov 2015)

[see Luca Comisso’s talk]




1. Trans-relativistic reconnection in
low-luminesity accretion flows



Sgr A*, our neighbor

X-rays v=2.2e+11Hz
3.6 10°M,, A=1.3e+00mm
[expected]

e The Chandra X-ray telescope allows to ¢ The Event Horizon Telescope
probe the properties of the gas around (EHT) is going to probe the gas in

the BH, on scales of order ~10° the immediate vicinity of the BH.
gravitational radii.



Thermal and non-thermal electrons

Sgr A* : spectrum
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e Thermal trans-relativistic electrons (with Te/Tp~0.3) are invoked to explain
the peak of Sgr A* spectrum.

e Non-thermal electrons are invoked to explain the spectrum and time
variability of X-ray flares from Sgr A* (Ponti+ 17).



Reconnection sites in Sgr A*
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e The plasma around reconnection layers

spans a range of beta and sigma.
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Flow dynamics and particle heating



Dependence on beta

0=0.1 (3=0.01, realistic mass ratio
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x [0/ @] (Rowan, LS & Narayan 2017)

e Low beta: the outflow is fragmented into a number of secondary plasmoids.



Dependence on beta

0=0.1 B=0.01, realistic mass ratio
200 E Density
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e Low beta: the outflow is fragmented into a number of secondary plasmoids.

0=0.1 B=2, realistic mass ratio
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~ 100 Density
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x [c/w] (Rowan, LS & Narayan 2017)

e High beta: smooth outflow, no secondary plasmoids.



Inflows and outflows

Inflow

Alfven speed
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Outflow

(Rowan, LS & Narayan 2017)

e Both the inflow speed and the outflow speed decrease at high beta
(relative to the Alfven speed), regardless of the temperature ratio.



Characterization of heating

. . upstream region, starting above the current sheet.
. . upstream region, starting below the current sheet.
e White/yellow: mix of and particles — downstream region.
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Define total electron heating as EAZERIN: o m;/me unit rest mass.

Oe down — 9(\_,111) O=dimensionless temperature.

i\['l’(‘.,t.()t. = -

alternatively, o m;/me (Shay et al. 2014)

and then separate adiabatic and irreversible contributions.



Electron heating efficiency

Electron-to-overall heating ratio

The curves extend
up to Bmax~1/(40)

10 10° 10° 10" 10°
B (Rowan, LS &
Narayan 2017)

e Electrons are always heated less then protons (for 0«1, the ratio is ~0.2).

e Comparable heating efficiencies:
- at high beta, when both species already start relativistically hot.
- in ultra-relativistic (o>1) reconnection.



Electron heating as a subgrid model

GRMHD simulation by A. Chael

Magnetic Reconnection Landau Damped Cascade
Te/Ti (Howes+ 2008)
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* Electrons always colder than protons. * Electrons hotter than protons in the jet.
* Disk electrons are hotter than in e Disk electrons are colder than in

Howes’ prescription. Rowan’s prescription.



Particle acceleration



Electron and proton acceleration

0=0.3 B=0.0003, realistic mass ratio

Density (particles per cell / Nppc)
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Protons: non-thermal tail only after

the formation of the boundary island.

Electrons: well developed power
law tail since early times.
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Dependence on beta

Electrons

(Ball, LS & Ozel 2018)

e Lower beta:

- fragmentation into secondary
plasmoids.

- hard electron spectra.
~ w

e Higher beta:

- smooth layer.

- steep electron spectra (nearly
Maxwellian).
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Dependence on beta and sigma

Electrons
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(Ball, LS &
Ozel 2018)

e Harder slope for higher sigma (at fixed beta); see also Werner+18.

» Harder slope for lower beta (at fixed sigma).



Electron acceleration mechanism
0=03  B=0.0003
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Two acceleration phases:
(a) at the X-point;

(b) in between merging islands 102
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(Ball, LS & Ozel 2018)



Electron injection in reconnection

Low beta
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e Many more X-points (E>B)
in low beta than in high beta.
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(Ball, LS & Ozel,
in prep)

1. Electron injection at X-points (E>B).
2. More X-points for lower beta.

3. Acceleration is more efficient /
harder slopes at lower beta.

power-law index




The special case of B~Bmax=1/(40)

Electrons
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(mg/me)(y — 1) (Ball, LS & Ozel 2018)

For high beta, yet below Bmax~1/(40), the electron spectrum is quasi-Maxwellian.

A power law emerges in the electron and proton spectra at Bmax~1/(40), when
both species start relativistically hot.



The special case of B~Bmax=1/(40)
o=1 PB=0.16
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First kick in energy at the moment of interaction with the smooth outflow.

Second kick in a Fermi-like process between the outflow and the boundary island.



2. Reconnection in strong radiation fields



Accreting X-ray binaries
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(McConnell+2002)

e Canonical interpretation: thermal Comptonization by hot plasma in a “corona”
with electron temperature of ~100 keV.

e Alternative (Beloborodov 2017): bulk Comptonization by a radiatively-cooled
plasmoid chain.
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(LS, Giannios & Petropoulou 16)



Plasmoid space-time tracks

0=10 L~1600 c/wp electron-positron

N\ ~Z7

We can follow individual
plasmoids in space and time.

First they grow, then they go:

* First, they grow in the center
(at a rate ~0.1 ¢) while moving
at non-relativistic speeds.

* Then, they accelerate
outwards approaching the
Alfven speed ~ c.

Plasmoid width w [L]

Lab-frame time [L/c]

........

(LS, Giannios & Petropoulou 16)



Inverse Compton losses

The particles scatter off a prescribed isotropic photon field in the Thomson regime:

!
Pic = §0T672U*

In the ultra-relativistic limit, the Compton drag force is
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We parameterize the radiation energy density via a critical Lorentz factor ycr
(balancing acceleration with IC losses):

4
ebc ~ gUTnyfrU* E~0.1B

What is the effect on particle acceleration and plasmoid dynamics?

Fix 0=10 and composition (electron-positron), vary Ycr.
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Weak IC losses

No difference in the inflow speed, outflow 4-velocity or plasmoid energy content.

The high-energy cutoff of the particle spectrum recedes to lower energies,
due to IC cooling (see Werner's talk).

upstream particles, downstream particles
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(LS & Beloborodov 18, in prep)
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Moderate IC losses

No difference in the inflow speed and maximum outflow 4-velocity.

Effect of Compton drag depends on plasmoid size:

U
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— small plasmoids
are unaffected,
intermediate
plasmoids are
decelerated).
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0.001 0.010 0.100 (LS & Beloborodov

18, in prep)
Plasmoid width w [L]




y. (1) y. (4

y. [

0.2
0.1

0.0

y. (L

~0.1
-D.2

v.[L)

Strong IC losses

No cooling
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Strong IC losses

Inflow speed / c
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(LS & Beloborodov
18, in prep)

e No appreciable difference in the inflow speed (i.e., the reconnection rate).

e Strong suppression in the maximum outflow 4-velocity (Compton drag).




Summary

Accretion Black Accretion

Disk Hole Disk
(1). Magnetized disks and coronae of (2). Magnetized coronae in bright
collisionless accretion flows (like Sgr A* accreting binaries (Cyg X-1).

in our Galactic Center). . _
e Trans- and ultra-relativistic reconnection

e Trans-relativistic reconnection (o~1), (0~10) in strong radiation fields, pair-
electron-proton plasma. dominated.

- Electrons are heated less than protons (the - Compton drag can decelerate intermediate
heating ratio is ~0.2 at low sigma and beta). and large plasmoids, and in extreme cases
- The power-law slope of accelerated slow down the whole outflow.

electrons is harder for higher sigma and/or - Bulk Compton off the plasmoid chain can
lower beta. Electrons are injected at X-points. ~ reproduce the hard state of accreting binaries.



