Revisiting the high-energy cutoff of accelerated particles in relativistic magnetic reconnection

> Maria Petropoulou (Princeton) L. Spitzer Postdoctoral Fellow

Lorenzo Sironi (Columbia)

8 May 2018

3rd Workshop on Relativistic Plasma Astrophysics, Purdue University

Non-thermal broadband radiation

Energy dissipation

Energy reservoir: kinetic

- Kelvin-Helmholtz instabilities
- Shocks

Energy reservoir: magnetic

- Current-driven kink instability
- Magnetic reconnection
- Magneto-luminescence

Zenitani & Hoshino 2001, Loureiro+2007, Bhattacharjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Nalewajko+2015; Kagan+2015 (for review); Sironi+2015; Werner+2016, Sironi+2016 and many more ...

What makes plasmoid-dominated reconnection appealing?

- Fast dissipation
- Fast bulk motion
- Efficient dissipation
- Non-thermal particle distributions
- σ-dependent power-law slopes

Sironi, Giannios, Petropoulou, 2016

Zenitani & Hoshino 2001, Loureiro+2007, Bhattacharjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Nalewajko+2015; Kagan+2015 (for review); Sironi+2015; Werner+2016, Sironi+2016 and many more ...

- Fast dissipation
- Fast bulk motion
- Efficient dissipation
- Non-thermal particle distributions
- σ-dependent power-law slopes

Sironi, Petropoulou, Giannios 2015

Zenitani & Hoshino 2001, Loureiro+2007, Bhattacharjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Nalewajko+2015; Kagan+2015 (for review); Sironi+2015; Werner+2016, Sironi+2016 and many more ...

- Fast dissipation
- Fast bulk motion
- Efficient dissipation
- Non-thermal particle distributions
- σ-dependent power-law slopes

Zenitani & Hoshino 2001, Loureiro+2007, Bhattacharjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Nalewajko+2015; Kagan+2015 (for review); Sironi+2015; Werner+2016, Sironi+2016 and many more ...

- Fast dissipation
- Fast bulk motion
- Efficient dissipation
- Non-thermal particle distributions
- σ-dependent power-law slopes

The extent of the power law (1)

The extent of the power law (2)

Open questions

Is the 4σ cutoff a strict limit?

Sironi & Spitkovsky 2014

How does the cutoff evolve with time?

Where do the most energetic particles get accelerated?

Simulations with periodic BC

σ	c/ω_p [cells]	L [c/ω _p]	L [r _{L, hot}]*	Duration $[1/\omega_p]$
10	5	1680	531	3375
10	5	3360	1062	13500
10	5	6720	2125	18360
10	5	13440	4250	27000
10	10	1680	531	3375
10	10	3360	1062	6750
50	5	1680	237.5	3375
50	5	3360	475	6750
50	5	6720	950	13500
50	5	13440	1900	27000

Note: $r_{L,hot} = \sqrt{\sigma} c / \omega_p$

Evolution of the layer

Particle distribution fitting

Evolution of slope & cutoff

Hint for softening

The cutoff clearly exceeds the 4σ value regardless of σ

Energy crisis for $\sigma >> 1$?

System's size

$$\frac{dN}{dy} \propto \gamma^{-p} \exp\left[-\frac{\gamma}{\gamma_c}\right]$$
$$\gamma_{max} \approx \frac{\int d\gamma \gamma^{n+1} \frac{dN}{d\gamma}}{\int d\gamma \gamma^n \frac{dN}{d\gamma}}$$

AN

Sub-linear evolution of cutoff & max energy with time?

Resolution

Same box size in skin depths

WORK IN PROGRESS

Tracking particles

Energy evolution of particles

Sub-linear evolution of particle energy with time

Distance from island's core

Particles confined close to the core region

Click

Magnetic field along trajectory

Particles experience stronger B-fields

Click

Particle magnetic moment

Click

Conclusions

- The cutoff Lorentz factor increases beyond the 4σ limit, if the simulation domain is large enough and reconnection is sustained.
- This holds for 2D simulations with either periodic or outflow BC.
- The power law softens slowly with time for σ =50. No energy crisis.
- The cutoff of the distribution increases as $(time)^{1/2}$ after it has exceeded the ~4 σ value.
- The energy of individual particles also increases as (time)^{1/2}, while they are being trapped close to the core of big islands.
- What controls particle acceleration in this case?

Thank you!

Back-up slides

Reconnection rate

Energy crisis for $\sigma >> 1$?

Tracking particle acceleration

Larmor radius vs island size (1)

Larmor radius vs island size (2)

Larmor radius vs island size (3)

Tracking particles (2)

Energy evolution of particles (2)

Distance from island's core (2)

Magnetic field along trajectory (2)

Particle magnetic moment (2)

Click