Relativistic Reconnection: radiative and 3D effects
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Reconnection’s main job: magnetic field energy -> particle/plasma energy
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Reconnection > particle energization/NTPA -> radiation
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(The Lorentz factor Y is used interchangeably with particle energy Ymc?.)

above from 2D simulations (e.g., Sironi&Spitkovsky 2014, Guo et al 2015, Werner et al 2016)
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Lz/Lx = varying (2D->3D)

Reconnection parameters

Upstream Parameters: pair plasma
Ny, Ty, By, By, (guide field)

Dimensionless parameters:

T,/ m_c?>>1 (ultrarelativistically-hot)

B, T,
0= 5 > 3 (relativistic reconnection)
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B.,/By=0, 0.25, 0.5, 1, 2 (guide field)

Later: vary inverse Compton (IC) radiative cooling

How do these parameters affect reconnection?
Specifically:

- energetics

- NTPA




Focus on two “outputs” of reconnection: basic dynamics/energetics, and NTPA

reconnection rate, magnetic energy dissipation, plasmoid formation, etc.
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Focus on two outputs of reconnection: basic dynamics/energetics, and NTPA

NTPA:

(shown here, for weak IC cooling)

particle energy spectra
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Vary Lz/Lx (3D-ness) and B,,/B, and see what happens...



3D effects: does Lz/Lx affect reconnection?

In particular, does the relativistic drift-kink instability (RDKI) inhibit particle acceleration?
Here, guide magnetic field may be important: it inhibits RDKI.
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However, more recent simulations (e.g., Sironi & Spitkovsky 2014, Guo et al 2015, Werner &
Uzdensky 2017) have suggested that particle acceleration is robust to 3D effects.



Despite significant RDKI, 2D and 3D reconnection have similar
reconnection rates and NTPA.

B, in the x-z reconnection midplane

Bx/B,



3D current sheet evolution




Energetics of 2D and 3D reconnection are similar regardless of guide field
(for later: guide field has a significant effect)
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And 2D and 3D particle spectra are similar!

Nonthermal acceleration remains robust from 2D to 3D!
Also, a little guide field B, hardly disturbs acceleration.
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Compressing plasmoids

n/n,

During reconnection, the in-plane
magnetic field compresses
plasmoids.

When there’s a guide field, that
guide field rests compression.
This slows reconnection and
inhibits particle acceleration.



Guide field not only slows reconnection rate, but steepens the NTPA power law.

Guide field slows reconnection, dissipates 0h=25
less magnetic energy (guide field resists
compression).
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Reconnection in a bath of soft (low-energy) photons

oft photon

upscattered photon

electron/positron
o ro——p

external inverse Compton (IC) radiation

High energy electrons (or positrons) scatter of photons, emitting high energy
photons, and experiences radiation reaction (radiaction) force.

If U, is the photon energy density, then the power loss, 4 5
P =—o.cU y
3 P

for an electron with ymc? is: rad

Power gain (accel.) in the reconnection electric field E=0.1B,: P = (O.l)eBOC

3(0.1)eB,

These 2 forces (powers) balance fory=y, .y V., =
40 .U oh

Particles can’t gain much more energy than this.



Reconnection setup with photon bath

Upstream Parameters: pair plasma
Ny, Ty, By, By, (guide field),
U, (soft radiation bath energy density)

Dimensionless parameters:

T,/ m_c?>>1 (ultrarelativistically-hot)
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Lz/Lx = varying (2D->3D) How do these parameters affect reconnection?



IC scattering doesn’t affect basic reconnection dynamics very much
YV;aq=°° (no cooling) V,;2q=20 (strong cooling)

color=plasma density (normalized to n,)



IC cooling has little effect on magnetic energy dissipation, reconnection rate
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Strong cooling doesn’t alter the amount of
magnetic energy transferred to particles...but
strong cooling means particles promptly radiate
that energy.



IC cooling changes particle spectra significantly: noisy, steeper
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_Ic Iclcl)lolir)gl ;hlalngels particle spectra significantly
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Time-dependence of power laws shows el 0 o VIad/la |
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Time-integrated IC
photon spectra
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Photon power law index alpha = (p-1)/2.
Hard slope p,=1.9 -> alpha = 0.45 (measured 0.5)
Steep slope p.=3-5 -> alpha = 1-3
however: a harder slope means more IC emission,
so alpha should be dominated by the hardest p, .;,=3 -> alpha= 1 (measured 1.1)

In this particular case (ultrarelativistic pair plasma, sigma_h=100, B_gz=B_0/4),
adding a soft photon bath changes index from alpha=0.5 to alpha=1.1.



Simulation comparison: TRISTAN-MP and Zeltron

Both codes implement same fundamental algorithms: explicit EM-PIC with minor variants.

Both (as of this year) use charge-conserving current deposition (div E =rho is
automatically maintained to high precision), though different variants.

Both codes implement IC radiation reaction force (in somewhat different ways).

The implementations are entirely independent. Do they agree? Yes; very well.
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Conclusions

3Dness (Lz/L x) has little effect — despite significant RDKI — on reconnection rate and NTPA
Guide field slows reconnection and inhibits NTPA

magnitude of effect depends on guide field enthalpy vs. particle enthalpy
e if guide field enthalpy is large, the guide field resists compression and slows

reconnection
* if guide field enthalpy is small (compared to particle enthalpy), not much effect

IC cooling (drag due to radiation reaction) has little effect on reconnection rate
IC cooling significantly affects NTPA

Particle spectrum forms a broken power law, with
* ahard slope p, (independent of IC cooling strength)
* a highly-variable steep slope p,, with p, > p,, + 1 (also independent of cooling)
* p.=p,+1 would mean continous acceleration and cooling
* p.>p,t+1 for episodes of acceleration followed by further cooling
* a break that decreases in energy as cooling strength increases
For very weak cooling, the break is above the reconnection-high-energy-cutoff and
only the hard power law appears;
for intermediate cooling, both power laws are visible;
for strong cooling, the hard power law appears only at the very beginning before being
overwhelmed by the steep power law

The IC radiation spectrum varies with the particle spectrum.

For weak cooling, p,=1.9 -> alpha=0.5
For strong cooling, p, varies, p, >= 3=p,+1, but the hardest component dominates so

the photon spectrum corresponds roughly to p.=3, or alpha=1 (measured 1.1).






