

On the physics of pair plasma generation in pulsars

Andrey Timokhin

NASA/Goddard Space Flight Center

Workshop on Relativistic Plasma Astrophysics

Purdue University, 7 May 2018

Andrey Timokhin (NASA/GSFC)

Pulsar: rapidly rotating magnet surrounded by plasma "Electric lighthouse"

Pulsars: What we see

radio:

gamma:

PWNe feed by dense plasma Energy goes there

Pulse peaks are narrow Negligible energy budget

Andrey Timokhin (NASA/GSFC)

Pulsar Magnetosphere: Large scale view

"Plasma machine"

Andrey Timokhin (NASA/GSFC)

Pulsar Magnetosphere: Theorist view

Electrical generator

The magnetosphere is charged characteristic charge density – "Goldrech-Julian" charge density $\eta_{\rm GJ}.$

Andrey Timokhin (NASA/GSFC)

Pair creation processes

Single photon pair creation in strong magnetic field $\gamma B \rightarrow e^+ e^-$ – close to the NS

Two photon pair creation $\gamma\gamma \rightarrow e^+ e^-$ – outer magnetosphere

The outer magnetosphere is transparent to gamma-rays up to few GeV, $\varepsilon_{esc} \sim 10^4 \textit{mc}^2.$

Very high multiplicity can be produces only close to the NS.

Plasma creation in the polar cap

Particle acceleration is regulated by pair production

Polar Cap Electrodynamics

Rotation of the NS

$$\nabla \cdot \boldsymbol{E} = 4\pi(\eta - \eta_{\rm GJ})$$

Twist of magnetic field lines

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c}j + \frac{1}{c}\frac{\partial \boldsymbol{E}}{\partial t}$$

E = 0 if **both**

$$\eta = \eta_{GJ}$$
$$j = j_{m} \equiv \frac{c \nabla \times \boldsymbol{B}}{4\pi}$$

Limit cycle: series of discharges

No particles extraction from the NS

• electrons • positrons • γ -rays

Free particle extraction from the NS

Andrey Timokhin (NASA/GSFC)

Electron-positron cascade is splitting of primary particle's energy into energy of pairs

Multiplicity is the number of particles created in cascade per single primary particle:

$$\kappa_{
m cascade} \simeq 2 rac{\epsilon_{
m primary}}{\epsilon_{\gamma,\,
m esc}} f.$$

f – is the cascade efficiency.

For pulsars multiplicity is excess of plasma density relative to the Goldrech-Julian number density:

$$\kappa_{\rm PSR} \simeq 2 \frac{n_{\rm plasma}}{n_{\rm GJ}}$$

Multiplicity of polar cap cascade rough estimate

$$\kappa_{ ext{cascade}} \simeq 2 rac{arepsilon_{ ext{primary}}}{arepsilon_{\gamma,\, ext{esc}}}$$

Multiplicity of polar cap cascade

rough estimate

Full cascade in energetic PSRs

AT & Harding '15, '18a

Resonant ICS Radiation

"feeds" on ε_{\parallel}

Synchrotron Radiation

"feeds" on ε_{\perp}

Curvature Radiation "feeds" on ε_{\parallel}

Andrey Timokhin (NASA/GSFC)

Cascade efficiency: f

$$\kappa = 2 \frac{\epsilon_p}{\epsilon_{\rm esc}} f.$$

Andrey Timokhin (NASA/GSFC)

Multiplicity of the polar cap cascade: $\kappa \sim few \times 10^5$

к weakly depends on pulsar period

The higher the NS temperature, the larger the κ at high B

Andrey Timokhin (NASA/GSFC)

Cascade Graphs for $\rho_{\rm c}=10^7 cm$

Cascades do not have a lof of generations

Figure: Cascade graphs for cascades in pulsars with P = 33ms, $\rho_c = 10^7$ cm, $T = 10^6$ K, and the following magnetic field strengths: (a) $B = 10^{12.5}$ G, (b) $B = 10^{12}$ G, (c) $B = 10^{11.5}$ G.

Cascade Graphs for $\rho_{\rm c} = 10^{7.9} \approx 7.94 \times 10^7 \text{cm}$

Cascades do not have a lof of generations

Figure: Cascade graphs for cascades in pulsars with P = 33ms, $\rho_c = 10^{7.9} \approx 7.94 \times 10^7$ cm and the following magnetic field strengths: (d) $B = 10^{12.9}$ G, (e) $B = 10^{12.5}$ G, (f) $B = 10^{12}$ G.

Discharge: RS flow

Andrey Timokhin (NASA/GSFC)

Discharge: super-GJ SCLF

Andrey Timokhin (NASA/GSFC)

Cascade Repetition Rate

Andrey Timokhin (NASA/GSFC)

Heating of NS surface by pair cascades

$$L_X \sim < n\epsilon_{\rm acc} cS > \equiv f_N n_{\rm GJ} \quad \epsilon_{\rm acc} c \quad f_S \pi r_{\rm pc}^2 \quad f_D \frac{h_{\rm gap}}{R_{\rm NS}}$$
$$L_X \sim f_D f_S f_N 2.5 \times 10^{16} \dot{E}^{3/7} B_{12}^{-4/7} \rho_7^{6/7}$$

(AT & Harding 2018b, in preparation)

Andrey Timokhin (NASA/GSFC)

Pair production in PSRs

Purdue University 2018 22 / 26

$L_X B^{4/7}$ vs \dot{E}

$L_X B^{4/7}$ vs \dot{E} corrected for $r_{hot}/r_{\rm pc}$

L_X/L_γ : observed PSR γ ray emission is not due to cascades in the outer magnetosphere

Maximum cascade multiplicity in a single burst $\kappa \sim \text{few} \times 10^5$ Maximum multiplicity is not sensitive to pulsar parameters

Cascade duty cycle seems to be $\sim \textit{h}_{gap} / \textit{R}_{\rm NS}$

Fermi does not see polar caps because the emission is very weak.