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μ = 80 μ = 160
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NS jet for short-GRBs in mergers?

Inferred jet power of GW170817 ~ 1049-1050 erg/s
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Simple jet model from previous slide:

Most extreme GRMHD simulation has Ljet ⇡ 11L0
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3D simulations
1. Need 3D for realistic MRI turbulent dynamo

2. Interchange instability: accretion through closed-field region 

Magnetic Rayleigh-Taylor
/ Interchange

Romanova+ 2012

Ideal MHD/MRI disc

alpha-prescription
resistive MHD

Kulkarni & Romanova 2008





stellar magnetic moment: μ = 10

𝜒 = 45o



Accreting neutron stars

First (general-) relativistic simulations of pulsar accretion

Four regimes:  crushed / accreting / propeller / excluded from light cylinder

Efficient flux opening — weak star-disc magnetic coupling 

                               — relativistic jets from millisecond pulsars

Force-free & MHD simulations support simple model for torques & jets

3D is important (realistic turbulence & interchange instability)

7 movies of axisymmetric runs on YouTube: link at 1708.06362 arXiv listing



Kinetic Simulations of 
Black Hole Magnetospheres

Alexander
Philippov

Benoit
Cerutti

with

UC Berkeley CNRS Grenoble



Collisionless Black Hole Plasmas

Highly relativistic jets

Low-luminosity accretion

Accretion disc X-ray coronae

Electrostatic gaps

General-relativistic calculation: much of the action near the horizon

e.g. coronal X-ray sources within ~ 10 rg

gaps within a few rg 

jet launching in ergosphere



Equations in curved spacetime: 3+1 ADM form

)tD = ( ùH * J

)tB = *( ù E

( �D = ⇢e

( � B = 0

E = ↵D + � ù B
H = ↵B * � ùD

Bi, D1
⌅, D

2
⌅

dxi
dt = ↵

m�p
i * �i

dpi
dt = *m�)i↵ + pj)i�j *

↵
2�m)i(�lm)plpm + q

$
↵Di + ✏ijk(vj + �j)Bk

%

Constitutive relations:

Maxwell’s
equations

Particle equations
of motion



GRPIC 1. – fields

3+1 ADM
form

)tD = ( ùH * J
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H = ↵B * � ùD Komissarov 2004
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J = ↵j * ⇢�
particles determine 

current density J:

FIDO-measured current densityset directly by vi = ui/ut
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Bn, Dn+1/2

pn, xn

B̄n�1/2 =
1

2
(Bn +Bn�1)

D̄n =
1

2
(Dn+1/2 +Dn�1/2)

Ẽn = ↵D̄n + � ⇥Bn

B̃n+1/2 = B̄n�1/2 ��tr⇥ Ẽn

En+1/2 = ↵Dn+1/2 + � ⇥ B̃n+1/2

Bn+1 = Bn ��tr⇥ En+1/2

Start of timestep, know:
Bn�1, Dn�1/2and

Use half-step auxiliary B
to find final B.

“Trapezoidal leapfrog”
for shift-dependent term

(i) evolve B



B̄n+1/2 =
1

2
(Bn +Bn+1)

pn, xn �! pn+1, xn+1 B̄n+1/2, Dn+1/2using

Jn+1 = J(xn+1, pn+1)

Find Dn+3/2 using Jn+1 & the trapezoidal leapfrog for � ⇥D

• Goes to (energy conserving) leapfrog as

• Gives better energy conservation for nonzero shift

• One particle push per timestep

� ! 0

(ii) particles

(iii) evolve D



GRPIC  2. – particles

Start from Hamiltonian: H = ⇡
i
v
i * L

⇡i = pi + qAi

pi vi = dxi
dt

conjugate momentum

kinetic momentum and

Lagrangian

with

dxi
dt = ↵

m�p
i * �i

dpi
dt = *m�)i↵ + pj)i�j *

↵
2�m)i(�lm)plpm + q

$
↵Di + ✏ijk(vj + �j)Bk

%
Hamilton’s equations give

gravitational
acceleration

~ extrinsic
curvature

Lorentz force

L = �m↵/�+ qAjv
j + qAt

Solve entirely in spherical coordinates



How should you solve these things?

Ideally want symplectic integrator

preserves symplectic two-form: s�⌫ = x� · p⌫

Flat spacetime: often use Boris push for Lorentz force

not symplectic, but volume preserving:                    is maintainedx� · p⌫

Qin+ 2013

“Why is Boris Algorithm 
So Good?”

very good energy stability



Particle integrator scheme

1. conserve phase-space volume, ∣x ∧ p∣

Strang split:  Lorentz
force

Lorentz
force

coordinate
terms

+
move particle

½ Δt Δt ½ Δt

Boris rotation in 
local orthonormal frame

volume conserving

implicit symplectic integrator

since H is non-separable

2. time-symmetric

Requirements:

� =
t

1 + �ijpipj_m2 fuses spatial & momentum 
dependence everywhere 



Geodesic tests — B = 0

Kerr black hole
a = 0.995

Prograde orbit w/
L = uᵩ = 2

E = -ut = 0.915082

Symplectic integrator (implicit midpoint)
with dt = 0.1 rg/c



Geodesic tests — B = 0

Periodic orbits: Levin & Perez-Giz 2008 



Symplectic integrator @ dt = rg/c



3rd-order Runge-Kutta @ dt = rg/c



Add B – particle in Wald vacuum field

Kerr metric: a = 0.999

equatorial plane



A first problem: “magnetospheric Wald”

force-free MHD Grad-Shafranov

Komissarov 2004 Komissarov 2005 Nathanail & Contopoulos 2014



SH ~ 0.18 B02

Energy flux 
through horizon

(mildly resistive)
force-free solution

– Phaedra code



Setup
Fiducial quantities

                B0 Uniform field strength at infinity

n
0
=

⌦
H
B
0

4⇡ce

rL,0 = 10*3 rg

�0 ˘ 2000

Injection

If                   > threshold ~ 0.01  AND      > threshold ~ 200  :
íD � íB
B2
0

�

inject particles n ◊  íD � íB

Initial Conditions

Vacuum steady state:
Wald 1974

A� = m� + 2ak� m� = )�
k� = )t

+ synchrotron cooling Pcool ◊
0

�
�sync

12



Initial state: vacuum Wald solution — a = 0.999
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Penrose particles — electrons

ut 



EM energy-at-infinity flux through horizon

S
H
=  

íE ù íH

4⇡
dA

H



EM energy-at-infinity flux through horizon

L
j,FFE = 10

*3

0
a�

H

2r
H

12

in units of

Tchekhovskoy+ 2010



How important are the particles’ curvature terms?
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Constitutive relations:

Maxwell’s
equations

Particle equations
of motion



How important are the particles’ curvature terms?
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Constitutive relations:

Maxwell’s
equations

Particle equations
of motion

Set metric derivatives to flat spacetime values



No synchrotron
cooling



Black hole magnetospheres

Can recover nearly force-free states

GRPIC isn’t prohibitively expensive

Many interesting applications

May need to keep all terms in the particle pusher
if have energetic particles near horizon

Can include photon propagation with
the same geodesic integrator method


