# Relativistic Accretion onto 

## Neutron Stars

and some things about black hole magnetospheres

## Kyle Parfrey

Alexander Tchekhovskoy
Lawrence Berkeley National Laboratory

Northwestern \& UC Berkeley

Purdue Workshop, May 8, 2018



KP \& Tchekhovskoy 2017


## $\mu=80$

$\mu=160$




Average values of:
magnetospheric radius
accretion rate
open flux
jet power
stellar torque
vertical bars: standard deviation over averaging period


## NS jet for short-GRBs in mergers?

Inferred jet power of GWI708I7~1049-1050 $\mathrm{erg} / \mathrm{s}$

Simple jet model from previous slide:

$$
L_{\mathrm{jet}} \sim 10^{52}\left(\frac{B_{*}}{10^{15} \mathrm{G}}\right)^{6 / 7}\left(\frac{\dot{M}}{\mathrm{M}_{\odot} \mathrm{s}^{-1}}\right)^{4 / 7}\left(\frac{\nu}{\mathrm{kHz}}\right)^{2} \operatorname{erg~s}^{-1}
$$

Most extreme GRMHD simulation has $L_{\mathrm{jet}} \approx 11 L_{0}$

$$
\rightarrow L_{\mathrm{jet}} \approx 6.4 \times 10^{50}\left(\frac{B_{*}}{10^{15} \mathrm{G}}\right)^{2}\left(\frac{\nu}{\mathrm{kHz}}\right)^{4} \mathrm{erg} \mathrm{~s}^{-1}
$$

## 3D simulations

I. Need 3D for realistic MRI turbulent dynamo
2. Interchange instability: accretion through closed-field region


Magnetic Rayleigh-Taylor
/ Interchange
alpha-prescription resistive MHD

Kulkarni \& Romanova 2008


Ideal MHD/MRI disc

Romanova+ 2012



## stellar magnetic moment: $\mu=10$

$$
\chi=45^{\circ}
$$



## Accreting neutron stars

First (general-) relativistic simulations of pulsar accretion
Four regimes: crushed / accreting / propeller / excluded from light cylinder
Efficient flux opening - weak star-disc magnetic coupling

- relativistic jets from millisecond pulsars

Force-free \& MHD simulations support simple model for torques \& jets
3D is important (realistic turbulence \& interchange instability)

7 movies of axisymmetric runs on YouTube: link at I 708.06362 arXiv listing

# Kinetic Simulations of Black Hole Magnetospheres 

Alexander<br>Benoit with<br>Philippov<br>Cerutti<br>UC Berkeley<br>CNRS Grenoble

## Collisionless Black Hole Plasmas

Highly relativistic jets
Low-luminosity accretion
Accretion disc X-ray coronae
Electrostatic gaps

General-relativistic calculation: much of the action near the horizon

$$
\begin{array}{r}
\text { e.g. coronal X-ray sources within } \sim 10 r_{g} \\
\text { jet launching in ergosphere }
\end{array}
$$

gaps within a few $r_{g}$

## Equations in curved spacetime: $3+1$ ADM form

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}=\nabla \times \boldsymbol{H}-\boldsymbol{J} & \nabla \cdot \boldsymbol{D}=\rho_{\mathrm{e}} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \nabla \cdot \boldsymbol{B}=0
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{E} & =\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
\boldsymbol{H} & =\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D}
\end{aligned}
$$

$\frac{\mathrm{d} x^{i}}{\mathrm{dt}}=\frac{\alpha}{m \Gamma} p^{i}-\beta^{i}$

## Particle equations

## of motion

$\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=-m \Gamma \partial_{i} \alpha+p_{j} \partial_{i} \beta^{j}-\frac{\alpha}{2 \Gamma m} \partial_{i}\left(\gamma^{l m}\right) p_{l} p_{m}+q\left\{\alpha D_{i}+\epsilon_{i j k}\left(v^{j}+\beta^{j}\right) B^{k}\right\}$

## GRPIC I. - fields

$$
\begin{array}{lcl}
\partial_{t} \boldsymbol{D}=\nabla \times \boldsymbol{H}-\boldsymbol{J} & 3+\mid \mathrm{ADM} & \nabla \cdot \boldsymbol{D}=\rho_{\mathrm{e}} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \text { form } & \nabla \cdot \boldsymbol{B}=0
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{E} & =\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
\boldsymbol{H} & =\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D} \quad \text { Komissarov } 2004
\end{aligned}
$$

particles determine


## GRPIC I. - fields

$$
\begin{array}{lcl}
\partial_{t} \boldsymbol{D}=\nabla \times \boldsymbol{H}-\boldsymbol{J} & 3+\mid \mathrm{ADM} & \nabla \cdot \boldsymbol{D}=\rho_{\mathrm{e}} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \text { form } & \nabla \cdot \boldsymbol{B}=0
\end{array}
$$

$$
\begin{aligned}
& \boldsymbol{E}=\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
& \boldsymbol{H}=\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D} \quad \text { Komissarov } 2004
\end{aligned}
$$

particles determine

$\underline{\text { Start of timestep, know: }}\left[\begin{array}{l}B^{n}, D^{n+1 / 2} \quad \text { and } \quad B^{n-1}, D^{n-1 / 2} \\ p^{n}, x^{n}\end{array}\right.$
(i) evolve B
"Trapezoidal leapfrog" for shift-dependent term

$$
\left[\begin{array}{l}
\bar{B}^{n-1 / 2}=\frac{1}{2}\left(B^{n}+B^{n-1}\right) \\
\bar{D}^{n}=\frac{1}{2}\left(D^{n+1 / 2}+D^{n-1 / 2}\right) \\
\tilde{E}^{n}=\alpha \bar{D}^{n}+\beta \times B^{n} \\
\tilde{B}^{n+1 / 2}=\bar{B}^{n-1 / 2}-\Delta t \nabla \times \tilde{E}^{n}
\end{array}\right.
$$

Use half-step auxiliary B$\left[E^{n+1 / 2}=\alpha D^{n+1 / 2}+\beta \times \tilde{B}^{n+1 / 2}\right.$ to find final $\mathbf{B}$.

$$
\left\llcorner B^{n+1}=B^{n}-\Delta t \nabla \times E^{n+1 / 2}\right.
$$

$$
\begin{aligned}
& \bar{B}^{n+1 / 2}=\frac{1}{2}\left(B^{n}+B^{n+1}\right) \\
& p^{n}, x^{n} \longrightarrow p^{n+1}, x^{n+1} \text { using } \bar{B}^{n+1 / 2}, D^{n+1 / 2} \\
& J^{n+1}=J\left(x^{n+1}, p^{n+1}\right)
\end{aligned}
$$

(iii) evolve D

Find $D^{n+3 / 2}$ using $J^{\mathrm{n}+1} \&$ the trapezoidal leapfrog for $\beta \times D$

- Goes to (energy conserving) leapfrog as $\beta \rightarrow 0$
- Gives better energy conservation for nonzero shift
- One particle push per timestep


## GRPIC 2. - particles

Start from Hamiltonian: $\quad H=\pi_{i} v^{i}-L$

$$
\text { conjugate momentum } \quad \pi_{i}=p_{i}+q A_{i}
$$

with kinetic momentum $\quad p_{i} \quad$ and $\quad v^{i}=\frac{\mathrm{dx}^{\mathrm{i}}}{\mathrm{dt}}$
Lagrangian $L=-m \alpha / \Gamma+q A_{j} v^{j}+q A_{t}$
$\frac{\mathrm{d} x^{i}}{\mathrm{dt}}=\frac{\alpha}{m \Gamma} p^{i}-\beta^{i} \longleftarrow$ Hamilton's equations give

$$
\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=-\underset{\text { gravitational }}{\sim} \underset{\sim}{\sim} \partial_{i} \alpha+p_{j} \partial_{i} \beta^{j}-\frac{\alpha}{2 \Gamma m} \partial_{i}\left(\gamma^{l m}\right) p_{l} p_{m}+q\left\{\underset{\text { Lorinsic }}{\left.\alpha D_{i}+\epsilon_{i j k}\left(v^{j}+\beta^{j}\right) B^{k}\right\}}\right.
$$

curvature


Solve entirely in spherical coordinates

## How should you solve these things?

Ideally want symplectic integrator
preserves symplectic two-form: $s_{\mu \nu}=x_{\mu} \wedge p_{\nu}$
very good energy stability
Flat spacetime: often use Boris push for Lorentz force
not symplectic, but volume preserving: $\left|x_{\mu} \wedge p_{\nu}\right|$ is maintained


## Particle integrator scheme

## Requirements:

I. conserve phase-space volume, $|\boldsymbol{x} \wedge p|$
2. time-symmetric

Strang split:


$$
\Gamma=\sqrt{1+\gamma^{i j} p_{i} p_{j} / m^{2}} \text { fuses spatial } \& \text { momentum }
$$

## Geodesic tests - B = 0

Kerr black hole $a=0.995$

Prograde orbit w/

$$
\begin{gathered}
L=u_{\varphi}=2 \\
E=-u_{t}=0.915082
\end{gathered}
$$



## Geodesic tests - B = 0




Periodic orbits: Levin \& Perez-Giz 2008

## Symplectic integrator @ $\mathrm{d} t=r_{g} / c$




## 3rd-order Runge-Kutta @ dt = rg/c




## Add B - particle in Wald vacuum field




Kerr metric: $a=0.999$
equatorial plane

## A first problem:"magnetospheric Wald"


force-free
Komissarov 2004


MHD
Komissarov 2005


Grad-Shafranov
Nathanail \& Contopoulos 2014


## Setup

## Fiducial quantities

$r_{L, 0}=10^{-3} r_{\mathrm{g}} \longrightarrow B_{0} \quad$ Uniform field strength at infinity
$n_{0}=\frac{\Omega_{\mathrm{H}} B_{0}}{4 \pi c e} \longrightarrow \sigma_{0} \approx 2000$

+ synchrotron cooling $P_{\mathrm{cool}} \propto\left(\frac{\gamma}{\gamma_{\mathrm{sync}}}\right)^{2}$
Injection
If $\frac{\vec{D} \cdot \vec{B}}{B_{0}^{2}}>$ threshold $\sim 0.0$ I AND $\sigma>$ threshold $\sim 200:$ inject particles $n \propto|\vec{D} \cdot \vec{B}|$


## Initial Conditions

Vacuum steady state: $\quad A_{\mu}=m_{\mu}+2 a k_{\mu}$
Wald 1974

$$
\begin{aligned}
A_{\mu}=m_{\mu}+2 a k_{\mu} \quad m^{\mu} & =\partial_{\phi} \\
k^{\mu} & =\partial_{t}
\end{aligned}
$$

Initial state: vacuum Wald solution $-a=0.999$





## Penrose particles - electrons



## EM energy-at-infinity flux through horizon



## EM energy-at-infinity flux through horizon



## How important are the particles' curvature terms?

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}=\nabla \times \boldsymbol{H}-\boldsymbol{J} & \nabla \cdot \boldsymbol{D}=\rho_{\mathrm{e}} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \nabla \cdot \boldsymbol{B}=0
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{E} & =\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
\boldsymbol{H} & =\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D}
\end{aligned}
$$

$$
\frac{\mathrm{d} x^{i}}{\mathrm{dt}}=\frac{\alpha}{m \Gamma} p^{i}-\beta^{i}
$$

## Particle equations

## of motion

$\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=-m \Gamma \partial_{i} \alpha+p_{j} \partial_{i} \beta^{j}-\frac{\alpha}{2 \Gamma m} \partial_{i}\left(\gamma^{l m}\right) p_{l} p_{m}+q\left\{\alpha D_{i}+\epsilon_{i j k}\left(v^{j}+\beta^{j}\right) B^{k}\right\}$

## How important are the particles' curvature terms?

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{D}=\nabla \times \boldsymbol{H}-\boldsymbol{J} & \nabla \cdot \boldsymbol{D}=\rho_{\mathrm{e}} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \nabla \cdot \boldsymbol{B}=0
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{E} & =\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B} \\
\boldsymbol{H} & =\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D}
\end{aligned}
$$

$$
\frac{\mathrm{d} x^{i}}{\mathrm{dt}}=\frac{\alpha}{m \Gamma} p^{i}-\beta^{i}
$$

## Particle equations

## of motion

Set metric derivatives to flat spacetime values
$\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=-m \Gamma \partial_{i} \alpha+p_{j} \partial_{i} \beta^{j}-\frac{\alpha}{2 \Gamma m} \partial_{i}\left(\gamma^{l m}\right) p_{l} p_{m}+q\left\{\alpha D_{i}+\epsilon_{i j k}\left(v^{j}+\beta^{j}\right) B^{k}\right\}$


## Black hole magnetospheres

Can recover nearly force-free states
GRPIC isn't prohibitively expensive
Many interesting applications
May need to keep all terms in the particle pusher if have energetic particles near horizon

Can include photon propagation with the same geodesic integrator method


