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Magnetar bursts - ver low T (few keV)

Younes +, 2014
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Low=KT (keV)

Trapped pair plasma fireball: equilibrium pair density at few keV is minuscule

Radiation processes frozen out - cannot cool

Something is wrong
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Free-free emission in T << B (classical )
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Free-free in infinite B: only e-e*

e Averaged over thermal
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Fit magnetized free-free with B=0 formula
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Relaxation in 1D pair plasma
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No relaxation due to binary collisions
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Quantum at zero Landau

* Landau gauge scatter
e sheefts of 2D waves ©
e change in momentum within the 2D sheet
e Feinmann diagrams
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“Dressed” propagator  .* hw
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Coulomb
interaction

Coulomb vertex for 0th Landau aH
can be calculated exactly!
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Very similar to classical

scattering amplitude
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Cooling wave in pair plasma
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e LTE (may not be good enough - photon
production rate may not be able to catch

up)
e Diffusione
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Colling wave

Read Zeldovich & Raizer - cooling waves
Nuclear explosions first few 100 meters
Nonlinear diffusion: cooling wave regime T(z-V 1)
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Full integration with Jedidiah Riebing)

~ diffusive ~ cooling wave

No clear separation of diffusive/cooling wave regime




Radiation and pairs in shocks



Cocoon prompt, Jet to be seen

GBM/Ferm|

Energy, keV
g

10 |

Seconds since GW trigger

<7 Observer

.- hard gamma-ray pulse

-~
~
~
~
~
~
~,

tidal tail

- NS-NS merger: hot disk

- Time to accumulate B-flux on BH ~ 1 sec
- Jet plows through ~ 0.01 Msun

- Breakout after ~ 1 sec

- Nearly spherical break-out: prompt

- Second peak from fast spine
(not yet seen)

10

5x10%  1=10' 510" 1x10°
Time, 8&c

Barkov, Giannios, Luo, Kathirgamaraju, Lyutikov, in prep.



Mildly relativistic shock propagating
through p ~ 10* gem® (~ 1072 Mg over 10°cm)

Radiation-mediated shocks

For 8> u'/?(nA})Y/% ~ 1072 post-shock radiation pressure > kinetic pressure

o= mp/me

Momentum flux ~ radiation flux prQ ~ O'SBT4/C

; Scatteted
~_> photons
RO

Upstream U,

Radiation dominated fluid

Shock transition downstream Uy

mediated by Compton scattering

pic. from Levinson

- Hot post-shock fluid emits photons - photon
pressure decelerates the flow

- Mildly relativistic flows can be strongly
affected by radiation

- High optical depth - LTE (?)
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Resolving radiation and pair-
mediated shock transitions

overall jJump condition

Bi1p1 = Bp matter flux

2
,01/61 = Dtot + ,Otot62 momentum flux
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P1B1/2 = (Wiot + piotS°/2) B+ F; energy flux

C
F. = — Vu
" 3Nt OT rad Energy redistribution
4 by radiation.

Urgd = —OSBT4 Diffusive - approximation!

Pressure, enthalpy, density: sums of baryons, pairs and radiation

Even though the radiation pressure is small, it can fly far-far
Higher order diff. equation - very different structure of solutions



Very simple case

Radiation energy density is negligible, but efficient
redistribution
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isothermal
jump

Read Zeldovich & Raizer:
isothermal jump

Two branches - initially on upper,
final state on lower,
no way to pass throughout

Final T reached before
final compression

— final state
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Fluid subshock

precursor compression
& heating

- Precursor: on scales >> photon
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mean free path: slow down and heat-up

- On scales << photon mean free path:

] fluid subshock, radiation continuous

fluid 2 3

sub-shock s = v -1 5

Continue on momentum
conservation curve

post sub-shock

lcompression & cooling

We did not say anything
about how energy is redistributed!
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Resolving the isothermal jump
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Add pairs and radiation
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, limit of large density
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06 / Standing shocks in core

— i | collapse, high density limit:
+Isothermal jump - post-shock T

IS 25% higher, but density 30%

lower
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- For highly radiatively dominated shocks (low density)
isothermal jump disappears - no shock, continuos transition
(can also be shown analytically)

- This turns out to be the regime in post NS-NS merger winds.



Conclusion

« Shocks in NS-NS mergers evolve in new, poorly
explored regime of mildly relativistic velocities,
relativistic temperatures, photon and pair loading,
perhaps induced nuclear reactions






