
Radiation in relativistic plasmas  
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Magnetar bursts - ver low T  (few keV)

!
!!!!!!!!!!!!!!

Trapped pair plasma fireball: equilibrium pair density at few keV is minuscule 

Radiation processes frozen out -  cannot cool
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Younes +, 2014

SGR J1550−5418, with RXTE bursts ~5 keV 

1E1841-045, with NuSTAR bursts ~3.3 - 5 keV 

1E1048.1-5937, with NuSTAR 6-8 keV 

1E 1048.1-5937 with RXTE, ~3keV

Something is wrong



Free-free emission in T << B (classical )

• 1D motion - lowest Landau level 
• nearly classical, in a sense 
• Acceleration/emission usually      , but now only  
• Free-free emission:  

•   

!
• Constant for B=0  

• = 0 for 1D  

• emissivity in single collision 
•   
• low freq.
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Free-free in infinite B: only e--e+

• Averaged over thermal
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Fit magnetized free-free with B=0 formula 

Treal = 12 Tfit

- Small absorption at > T!
!
-   Compton redistribution



!
!
!
!
!

Relaxation in 1D pair plasma
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v0 v0v0v0v0 v0
Keep the same |v|!
No way to tell them apart

No relaxation due to binary collisions

Triple collisions!
!
some 10 orders of magnitude smaller!
(also, no Coulomb logarithm!)
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Quantum at zero Landau

• Landau gauge 
• sheets of 2D waves 
• change in momentum within the 2D sheet 
• Feinmann diagrams
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Coulomb vertex for 0th Landau  

can be calculated exactly! 
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Cooling wave in pair plasma

• Trapped fireball (a la spheromak/Hills vortex 
but with pressure) 

• Cools by radiation - how? 

• Half space filled with pair plasma, open the lid 
- how T evolves. 

!
!
!
!

•  LTE (may not be good enough  - photon 
production rate may not be able to catch 
up) 

• Diffusion?
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Colling wave

• Read Zeldovich & Raizer - cooling waves 
• Nuclear explosions  first few 100 meters 
• Nonlinear diffusion: cooling wave regime T(z-v t) 
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Full integration (with Jedidiah Riebing)
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~ diffusive ~ cooling wave

No clear separation of diffusive/cooling wave regime



Radiation and pairs in shocks
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- NS-NS merger: hot disk 
- Time to accumulate B-flux on BH ~ 1 sec 
- Jet plows through ~ 0.01 MSun 
- Breakout after ~ 1 sec 
- Nearly spherical break-out: prompt

Cocoon - prompt, Jet- to be seen

Barkov, Giannios, Luo, Kathirgamaraju, Lyutikov, in prep.

- Second peak from fast spine 
(not yet seen)



Mildly relativistic shock propagating  
through                              ⇢ ⇠ 10
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Radiation-mediated shocks 

Momentum flux ~ radiation flux ⇢v2 ⇠ �SBT
4/c

- Hot post-shock fluid emits photons - photon 
pressure decelerates the flow 
- Mildly relativistic flows can be strongly 
affected by radiation 
- High optical depth - LTE (?)

Pair production (and nuclear reactions) in the wind 

Upstream uu

downstream du              Shock transition  
mediated by Compton scattering 

Radiation dominated fluid 

Scattered  
photons 

pic. from Levinson
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Resolving radiation and pair-
mediated shock transitions
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Energy redistribution 
 by radiation. 
Diffusive - approximation!

overall jump condition

Pressure, enthalpy, density: sums of baryons, pairs and radiation
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Even though the radiation pressure is small, it can fly far-far 
Higher order diff. equation - very different structure of solutions



Very simple case
• Radiation energy density is negligible, but efficient 

redistribution
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T = ⌘(1� ⌘)mpv
2
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Fluid subshock

isothermal 	
jump
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We did not say anything  
about how energy is redistributed!
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- Precursor: on scales >> photon 
 mean free path: slow down and heat-up



-0.0010 -0.0005 0.0000 0.0005

0.0

0.2

0.4

0.6

0.8

1.0

x

�,
�/
� m

ax

fluid	
sub-shock

precursor

⌘(x)

✓(x)/✓
max

isothermal transition 	
overall

Resolving the isothermal jump
Ms =

s
2

�(� � 1)
=

3p
5

Itoh + 2018



Add pairs and radiation
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- For highly radiatively dominated shocks (low density)  
isothermal jump disappears - no shock, continuos transition  
(can also be shown analytically) 
- This turns out to be the regime in post NS-NS merger winds.

limit of large density

Standing shocks in core 
collapse, high density limit: 
isothermal jump - post-shock T 
is 25% higher, but density 30% 
lower



Conclusion

• Shocks in NS-NS mergers evolve in new, poorly 
explored regime of mildly relativistic velocities, 
relativistic temperatures, photon and pair loading, 
perhaps induced nuclear reactions
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