GRPIC simulations of pair discharges in a starved BH magnetosphere

Amir Levinson

Tel Aviv Univ.

In collaboration with Benoit Cerutti

Outline

Theoretical and observational motivation

A comment on steady gap solutions

• GR PIC simulations

Outflow from a rotating magnetosphere

Neutron star

Kerr black hole

Plasma injection in the magnetosphere

plasma source between inner and outer Alfven surfaces

How much is needed?

E field in magnetosphere is screened out:

Plasma density must satisfy: $n >
ho_{GJ}/e$

Otherwise the magnetospere becomes charge starved, $\vec{E} \cdot \vec{B} \neq 0$

In Kerr geometry

How to produce the required charge density?

Protons from RIAF?
Protons from n decay?
e[±] from γγ annihilation?
Other source?

Protons have to cross magnetic field lines. Diffusion length over accretion time extremely small.

> instabilities or field reversals. But intermittent spark gaps may still form.

Direct pair injection by $\gamma\gamma \rightarrow e^{\pm}$

Requires emission of MeV photons:

- Low accretion rates: from hot accretion flow
- High accretion rate: from corona?

Direct pair injection

Low accretion rates (RIAF): AC may be hot enough to produce gamma-rays above threshold (Levinson +Rieger 11, Hirotani + 16)

Conditions for gap formation (From Hirotani+16)

Activation of a spark gaps

AL 00; Neronov + '07, AL + Rieger '11, Broderick + 15; Hirotani+ 16, AL+Cerutti 18

• activated when n < n_{GJ} . Expected in M87 when accretion rate < 10⁻⁴ Edd.

must be intermittent.
particle acceleration to VHE by potential drop.

Steady gap model in brief

Gap structure is determined by 2 input parameters:

- global magnetospheric current
- pair production opacity

invoke B field geometry + properties of seed photon source,

solve
$$\partial_{\mu}\left(rac{\sqrt{-g}}{lpha^2} F^{\mu}_t
ight) = 4\pi\sqrt{-g}(
ho_e -
ho_{GJ})$$

- +Eq of motion for pairs
- + radiative transfer (with IC and curvature sources)
- + pair production (continuity Eq)
 - iterate until all boundary conditions are met.

example

AL + Segev 17

Gap location is fixed by magnetospheric current and disk luminosity

Gap spectra (Hirotani + 16, 17)

10 yrs d= 1000pc (I,b)=(0,0)10⁻¹¹ a= 0.9 M (0.30)CTA 50 hrs (120, 45)North 10⁻¹² Photon energy flux (TeV² s⁻¹ cm⁻¹ TeV⁻¹) Input ADAF South emission supermassive BH (M=10⁹) 10⁻¹³ 10⁻¹⁴ 10 yrs (l,b)=(0,0)10⁻¹⁵ Output gap emission CTA 50 hrs (0. (120, 4). North 10⁻¹⁶ South 10^{-1} MeV GeV TeV PeV meV eV keV Photon energy Photon energy flux 10⁻¹⁵ Primary Peak energy scales IC curvature roughly as $M_{BH}^{1/4}$ 10⁻¹⁶ 10⁻¹⁷ meV eV keV MeV TeV PeV GeV

Stellar BH (M=10)

Photon energy

Inherent intermittency AL + Segev 17

Local condition

Global inconsistency

GRPIC Simulations

Benoit Cerutti and his Zeltron code

- Fully GR (in Kerr geometry)
- Inverse Compton and pair production are
 - treated using Monte-Carlo approach.
- Curvature emission + feedback included
- Currently 1D local gaps
- Goal: 2D global simulations

We used Boyer-Lindquist tortoise coordinate, with r replaced by a tortoise coordinate:

units $d\xi = r_a^2 dr/\Delta$). It is related to r through:

$$\xi(r) = \frac{1}{r_+ - r_-} \ln\left(\frac{r - r_+}{r_- - r_-}\right),$$
(3)
with $r_{\pm} = 1 \pm \sqrt{1 - \tilde{a}^2}$. Note that $\xi \to -\infty$ as $r \to r_H = r_+$,

Field dynamics

 $\partial_t(\sqrt{A}E_r) = -4\pi(\Sigma j^r - J_0),$

Example

 $au_0 = \sigma_T n_{ph} r_g \sim$ Pair-production opacity across gap

 $au_0 = 10$

Radiation reaction limit

Light curve

M87 VLBA movie (43 GHz)

12^h30^m

Right Ascension (hours)

12^h31^m

12^h32^m

M87- VHE emissionStrong flares observed in 2005, 2008, 2010 $L_j \approx 10^{44} \text{ erg } s^{-1}$, $L_{\gamma} \approx 10^{40} - 10^{41} \text{ erg } s^{-1}$ Variability time $\approx 1 \text{ day } \approx r_a$

2008 flare (Acciari + 09)

2010 flare (Hada + 12)

Variable TeV emission correlated with radio flux from innermost region. No significant activity on larger scales, particularly HST-1

Conclusions

- spark gaps may form if survival time of coherent magnetic domains exceeds a few dynamical times. May be the production sites of variable VHE emission.
- > gaps are inherently intermittent.
- > Pair discharges by rapid plasma oscillations, emitting TeV photons with $L_{TeV}/L_{BZ} \sim 10^{-5}$.
- > strong TeV flares can be produced if gap is restored