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Many space (and, supposedly, astrophysical) plasmas 
are pressure-anisotropic… 

Marsch (2006)
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…because they are 
strongly magnetized, 

weakly collisional

⇢i ⇠ 10�6 au

�mfp ⇠ 1 au

solar wind:

intracluster medium:
⇢i ⇠ 10�9 pc

�mfp ⇠ 10 kpc



B introduces periodic motion, 
which leads to adiabatic invariants…

µ =
mv2?
2B

Kruskal (1958)

J =

I
d`B mvk

Northrop & Teller (1960)

averaging over particles gives
Chew, Goldberger & Low (1956)
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Parallel pressure forces 
squeeze tube out. 

Rosenbluth 1956 
Southwood and  
Kivelson 1993 P|| P|| 

Tighter bend grows 
faster. 

firehose instability

tension force

Rosenbluth 1956 
Parker 1958

…when you try to propagate an Alfvén wave in a pressure-anisotropic plasma

…when you try to Barnes-damp a slow mode in a pressure-anisotropic plasma

mirror instability

Rudakov and Sagdeev 1961 
Southwood & Kivelson 1993

Perpendicular pressure forces 
blow out field lines.
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Pressure anisotropy is limited in solar wind:

|�B|
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magnetic fluctuations  
are enhanced near  
stability thresholds

Bale et al. 2009

Horbury & Lucek 2009

Hellinger et al. 2006

firehose fluctuations

magnetic mirrors



…and in kinetic simulations of  turbulence

kinetic magnetorotational turbulence 
(Kunz, Stone & Quataert, 2016 PRL)

turbulent dynamo in a  
collisionless plasma 

(St-Onge & Kunz, 2018 submitted)



How is marginal firehose/mirror stability achieved? 

and 

How does this impact the macroscopic evolution?



driven firehose instability driven mirror instability

Kunz, Schekochihin & Stone (2014), Phys. Rev. Lett.

firehose and mirror instabilities studied 
with shear-driven pressure anisotropy

see also Riquelme et al. (2015); Melville, Schekochihin & Kunz (2016) 
and Hellinger and Trávníček (2015); Sironi and Narayan (2015); Hellinger (2017)
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wave-particle interactions 
provide “collisionality”

pressure anisotropy pinned at  
marginal stability by breaking   . µ

pressure anisotropy pinned at  
marginal stability by cooling  

(majority) population of  
nonlinearly trapped particles



key idea: 
these kinetic instabilities restore  

fluid-like behavior to collisionless systems  
by limiting departures from  

local thermodynamic equilibrium 



impact on macroscopic evolution, example: MRI turbulence

time|B|
demonstration of  MRI “channel modes” in collisionless plasma

new feature: MRI adiabatically drives pressure anisotropy,  
which triggers kinetic instabilities that regulate it

see Riquelme et al. (2012) and Hoshino (2013) for more on kinetic MRI in 2D
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time|B|
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mirrors!
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impact on macroscopic evolution, example: MRI turbulence
see Kunz, Stone & Quataert (2016), Phys. Rev. Lett.



impact on macroscopic evolution, example: MRI turbulence

TR� = ⇢uRu� � BRB�
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stress transporting angular momentum:

Maxwell 
stress

Reynolds 
stress

“viscous” 
stress

log10 N(T?i/Tki,�ki)

mirror

firehose

IC

direct connection between  
plasma microphysics  

and macroscale dynamics

see Kunz, Stone & Quataert (2016), Phys. Rev. Lett.

mirrors on MRI channel:



Let’s take a step back… 
(following Squire et al. 2016, ApJL)

Consider a standing, shear-Alfvén wave:

tension

tension

!A = kkvA
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(following Squire et al. 2016, ApJL)



Consider a standing, shear-Alfvén wave:

Let’s take a step back… 
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Now, how much pressure anisotropy was driven 
by this decrease in field strength?

Consider a standing, shear-Alfvén wave:

Let’s take a step back… 
(following Squire et al. 2016, ApJL)
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If , plasma goes firehose unstable.

Note that these can have                         ! �B?/B0 ⌧ 1

dB/dt < 0



What happens at this wave-amplitude threshold?

1.  Wave is “interrupted” and can’t oscillate/propagate. 
 
 
 
 
 
 
 
Alfvén wave nonlinearly removes its own restoring force. 

2. Plasma is unstable to a sea of  ion-Larmor-scale fluctuations, 
which trap and scatter particles and viscously decay the wave.
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magnetic 
tension

nullified if  this is �B2/4⇡

(similar to what occurs in the exhaust of  reconnection sites,  
e.g., Drake et al. 2006; Schoeffler, Drake & Swisdak 2011)
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B0 = B0x̂

linearly polarized, standing Alfvén wave

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.
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linearly polarized, standing Alfvén wave

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.
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Conclusion: 

linearly polarized Alfvén waves cannot be sustained 
with amplitudes                          .�B?/B0 & ��1/2

(some evidence for this in the solar wind… ask if  you want to see)

Measured ion viscous heating is Braginskii-like (of  practical use) 



What about compressive fluctuations?

A. Schekochihin: “[in a collisionless hot plasma] no one will hear you scream”

well, not necessarily… 
what if  compressive fluctuations drives pressure anisotropy, 

which excites mirror/firehose, which makes the plasma act “MHD-like”

In a magnetized, weakly collisional plasma: !2 = k2a2 � i!k2µ

But for (small) viscous losses (and steepening), sound waves propagate just fine

In a magnetized, collisionless plasma: !
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solving this…



redacted



Implications, Predictions, and Wild Speculation

In a high-ß low-collisionality plasma…  

• Firehose and mirror instabilities regulate the pressure anisotropy,  
and thus set the effective plasma viscosity   (important for dynamo, MRI, waves) 

• There should be a ß-dependent maximum amplitude for different 
polarizations of  Alfvén waves  (testable prediction in SW) 

• Compressive fluctuations with amplitudes above a ß-dependent  
threshold should live longer than they would otherwise    (MHD SW?) 

• Direct energy transfer from macroscales to microscale fluctuations 
and thermal energy, w/o customary scale-by-scale cascade  (Reeff ~ 1?) 

• Modern theories of  Alfvén-wave turbulence (e.g., GS95) most likely 
don’t apply at sufficiently high ß . New theory of  turbulence needs 
to be developed…



Consider a thinning current sheet 
in a collisionless, magnetized plasma

B will increase in inflowing  
fluid elements, driving P⊥ > P‖
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(not to scale)

Brec

mirrors will rapidly grow and  
saturate above ion-Larmor scales, 

changing Δ'(k) 

tearing modes grow and disrupt 
CS formation earlier than 

they would otherwise 
(cf. Uzdensky & Loureiro)

(analytic theory now worked out  
for this… soon to be submitted)

something like this occurs in simulations of   
kinetic MRI channel mode (see Hoshino 2013)
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