Kinetic Simulations of Pulsar Magnetospheres and High Energy Emission

Alice K. Harding NASA Goddard Space Flight Center

Collaborators: Constantinos Kalapotharakos Gabriele Brambilla Andrey Timokhin Demos Kazanas

3D Particle-in-Cell code

- 3D Cartesian PIC code written by C. Kalapotharakos
- Particle mover implements Vay's algoritm
- Radiation-reaction forces are included
- Maxwell's Eqns integrated by FDTD on Yee mesh
- Cube with sides 9.6 R_{LC} PML used at outer boundaries
- Neutron star surface at 0.28 R_{LC} boundary layer 0.28 - 0.36 R_{LC} enforces force-free E
- Non-uniform computational volume controls CPU load balance
- Surface B <= 10⁶ G to maintain high magnetization

Tests of PIC code

2-stream instability:

Kalapotharakos et al. 2018

Weibel instability:

Pair injection

• Injection in all cells up to $r = 2.5 R_{LC}$ Inject one pair at rest per time step in each cell where local magnetization is above a value: B^2

$$\Sigma = \begin{cases} \Sigma_0 \left(\frac{r_s}{r}\right)^3 & \text{if } r \leqslant R_{\text{LC}} \\ \Sigma_0 \left(\frac{r_s}{R_{\text{LC}}}\right)^3 \frac{R_{\text{LC}}}{r} & \text{if } r > R_{\text{LC}} \end{cases}$$

$$\sigma_{\rm M} = \frac{B^2}{8\pi (n_{e^+} + n_{e^-})m_{\rm e}c^2}$$

where Σ_0 is adjusted to reach a given pair injection rate at the NS r_s

$$F = M F_{GJ} = M \frac{\Omega B_s A_{PC}}{\pi q_e}, \qquad F_{GJ}^0 = F_{GJ} / \cos \alpha$$

• Injection only near neutron star surface

Inject one pair per time step in only first layers of cells above boundary layer at 0.36 -0.5 R_{LC} when σ_{M} is above (r₀ = 0.36 R_{LC})

$$\Sigma = \Sigma_0 \left(\frac{r_0}{r}\right)^3$$

Formation of force-free magnetosphere

Brambilla et al. 2018

Pair injection rate needed to reach average magnetic and electromagnetic energy density of force-free magnetosphere

α = 45°

Current and E₀ with injection rate

Brambilla et al. 2018

As pair injection rate increases – region of accelerating electric field shrinks to current sheet

Poynting flux and dissipation

Maximum dissipation 15% at $\mathcal{F} = 3.5 \mathcal{F}_{GT}$

Brambilla et al. 2018

Global vs. surface injection Brambilla et al. 2018

Positron and electron currents

2.0

1.0

0.0 -Axis

-1.0

-2.0

-3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-3.0

(RLC)

(RLC)

Brambilla et al. 2018

Particle trajectories

Brambilla et al. 2018

Surface injection

A, D – positrons at Y-point and in current sheet

B, C, E – positrons and electrons flowing out above polar cap

Electrons falling back to the neutron star (see also Cerutti et al. 2015, Philippov et al. 2017)

Particle trajectories

Brambilla et al. 2018

e⁺ from polar region that cross field lines to enter current sheet

Particle distributions

Low α : mostly positrons at highest energy High α : both positrons and electrons at highest energy

As injection rate increases: Smaller percentage of particles at highest energy

Accelerating field

Particle acceleration site

Most particle acceleration occurs in and near the current sheet and separatrices

High energy emission Kalapotharakos et al. 2018

Problem – how to scale maximum PIC energy ($\gamma \sim 10^3$) to maximum energy of real pulsar ($\gamma \sim 10^{7-8}$)? Our solution – parallel calculation of particle dynamics with B₀ (and resulting E₀) scaled up to those of real pulsar

Cutoff energy and luminosity

YP with \mathcal{E} < 10³⁴ erg/s MP with \mathcal{E} < 10³³ erg/s produce spectra below Fermi band

No Fermi detection of YP with $L_{\gamma} < 10^{32}$ erg/s or MP with 10^{31} erg/s

High energy light curves

High energy light curves

Summary

- Using 3D Cartesian PIC code we simulated pulsar magnetospheres with a range of pair injection rates both from NS surface to 2.5 R_{LC} and only near NS surface
- From near vacuum to near force-free we observe:
 - Pairs screening more parallel E which shrinks toward current sheet
 - Fewer particles are accelerated in smaller E₀
- Electron and positron trajectories show current composition
 - Polar current outflowing e⁻ and e⁺
 - Return current outflowing e⁺ and returning e⁻ (some crossing B field)
 - No need for pair production in outer magnetosphere
- Scaled-up particle energies can produce Fermi emission by curvature radiation

Next steps

- Incorporate pair production microphysics self-consistently?
- Scaling up PIC to real particle energies
- Optical and X-ray emission