Plasmoids and Particle Acceleration in Relativistic Turbulent Systems

Luca Comisso and Lorenzo Sironi

Department of Astronomy, Columbia University and Columbia Astrophysics Laboratory, Columbia University

Workshop on Relativistic Plasma Astrophysics Purdue University, May 7-9 2018

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

- ▶ Is plasma turbulence an efficient source of non-thermal particles?
- ► What are the requirements to produce non-thermal particles with power-law energy distribution?
- ► How do the power-law characteristics depend on the system parameters?
- ▶ What are the mechanisms that produce the accelerated particles?

Tools and basic setup

- ▶ PIC Method using TRISTAN-MP code (Spitkovsky 2005)
- ▶ Numerical simulations of decaying turbulence
- ▶ 2D and 3D simulations initialized with uncorrelated magnetic field fluctuations in Fourier harmonics with random phases
- ▶ We consider an electron-positron plasma and uniform magnetic guide field B_0
- Simulations in the regime

$$\sigma = \frac{\delta B_{\rm rms}^2}{4\pi w} \gg 1, \qquad \theta = \frac{k_B T_e}{m_e c^2} \sim 1, \qquad \frac{1}{16} \le \frac{\delta B_{\rm rms}^2}{B_0^2} \le 1$$

with $w = n m_e c^2 + [\Gamma/(\Gamma - 1)] p$

2D contour plots of the current density j_z

2D contour plots of the current density j_{z}

- ▶ Maximum turbulence activity identified by the peak of the mean squared current density $\langle j_z^2 \rangle(t)$
- Power spectrum similar to the non-relativistic regime (details not addressed in this talk)

Production of non-thermal particles

- ▶ The spectrum at late times resembles a power law
- The slope of the power law does not change for increasing system sizes
- ▶ The high energy cutoff increases with the system size

Production of non-thermal particles

- The slope of the power-law depends on the fluctuations level
- Different magnetic field initial harmonics produce consistent results

Particle spectrum in 3D

- ▶ The particle spectrum in 3D is essentially similar to 2D
- ▶ Slightly harder power-law in 3D

How particles are accelerated?

Luca Comisso

Workshop on Relativistic Plasma Astrophysics

How particles are accelerated?

Luca Comisso

Workshop on Relativistic Plasma Astrophysics

Where does particle injection occurs?

$$\frac{\Delta\gamma}{\Delta t} > C \frac{q}{m_e c} E_{rec}$$
 and $\gamma_i < \gamma_{thr_i}$ and $\gamma_f > \gamma_{thr_f}$

Luca Comisso Workshop on Relativistic Plasma Astrophysics

Further acceleration

▶ Particles are grouped in slices of Δt depending on their injection time

 Particles are first accelerated in reconnecting current sheets, then they are accelerated by scattering with turbulent fluctuations

- ► Large fluctuations and magnetization are required to produce power-law energy distributions
- ► The power-law slope doesn't change for increasing system size
- The high-energy cutoff increases steadily with the system size
- First particle acceleration at current sheets
- Second particle acceleration by scattering with turbulent fluctuations

Image Credit: NASA, ESA, J. Hester, A. Loll (ASU)

Appendix 1: particle density

Appendix 2: slices of $|\mathbf{J}_z|$

Luca Comisso Workshop on Relativistic Plasma Astrophysics