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Magnetars: Phenomenology

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

Magnetars are slowly rotating, isolated neutron stars with extra-
strong magnetic field. They are usually bright X-ray sources with
luminosity much higher than their spin-down luminosity.

 

Spin period  and spindown  have been measured for most
known magnetars. Most have .
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Persistent Magnetars

Alex Y. Chen 
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Persistent emission spectrum from 1E 2259+586 (Vogel et. al.
2014)
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Persistent Magnetars

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

Photon index for several known persistent magnetars with
measured hard X-ray spectrum (Olausen & Kaspi 2014)

 
Name Pulsed Emission Total Emission

4U 0142+61

SGR 0501+4516 ... ...

1E 1841-045

1E 2259+586 ...

1RXS J170849.0

Photon index  defined by . Therefore 

(keV)Ecut

Γp F
p

20−150keV Γt F t
20−150keV

0.40(15) 2.68(1.34) 0.93(6) 9.09(35) 279+65
−41

0.79+0.20
−0.16 < 3.5 > 100

0.72(15) ∼ 4.0 1.32(11) ∼ 6.9 > 140

−1.02(24) ∼ 5.9 0.4(1) < 2.0

0.86(16) 2.60(35) 1.13(6) 5.2(1.0) > 300

Γ dN/dE ∼ E−Γ ν ∼Fν E2−Γ
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Persistent Magnetars
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Pulse profiles of 1E 2259+586 at different energy bands look
completely different (Vogel et. al. 2014)
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Coronal Outflow Model
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Gap near the foot of the corona, creating pair outflow which
decelerates due to resonant scattering. (Beloborodov 2013)



Resonant Scattering

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

 near the magnetar can absorb thermal X-ray photons resonantly
if the photon energy in its rest frame is . This process: 

Provides high energy photons for pair production, 
depends on local  field.

Applies an effective drag force on the particles

Produces the observed X-ray spectrum
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Resonant Drag on a Single Particle
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0:00
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Simulation of the Twisted Magnetosphere
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0:00
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Movie in 3D
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Where is the Gap?
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Radiation Spectrum
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Persistent Magnetars

Alex Y. Chen 
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Persistent emission spectrum from 1E 2259+586 (Vogel et. al.
2014)
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Angle-dependent Spectrum
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Magnetars, Summary

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

Resonant scattering has highly nontrivial effect on the global
electrodynamics of the twisted magnetar magnetosphere.

Electron/Ion asymmetry will lead to two qualitatively
different hemispheres.

We can reproduce hard X-ray spectrum from only resonant
scattering in PIC simulations. The spectral index is highly
angle dependent. 13



Pair Discharge in BH Magnetosphere
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In black hole jets, the plasma
supply in the funnel region has
been a long standing problem.

Centrifugal barrier prevents
accretion material to penetrate
into the jet. But plasma is required
to conduct the BZ current.
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Structure of the BH Magnetosphere
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Where is the Gap?
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At null surface?

At stagnation surface?

Near light surfaces?

Is the gap static?

Is there a limit cycle? If so what is the period and duty cycle?
16



1D Simulation
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Constant background current density , varying . 
everywhere. 
 

Both the null surface and the stagnation surface are included.

Two light surfaces inside the box. Outside the light surfaces particles can
only stream one way.

jB ρGJ > c| |jB ρGJ

= 4π( − j), = 4π(ρ − )
∂Er

∂t
jB

∂Er

∂r
ρGJ
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Treatment of Light Surfaces
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To capture the effect of light surfaces, we imitate the light cylinders
of a rotating pulsar.
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Treatment of Light Surfaces
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We consider particle to be "beads on a wire".

 
 

 becomes  at the light surfaces, at which point particles can
only move in one direction.

v = + (Ωr sin θ + )vr r̂ βϕvr ϕ̂

= =
dr

dt
vr

/γmc +pr β2
ϕ

1 + β2
ϕ

βϕ ±1



Inverse Compton Scattering

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

 

We use Monte Carlo method to sample the IC spectrum, assuming a
power law background soft photon distribution I(ϵ) ∝ (ϵ/ϵmin)−α
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1D Simulation
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0:00
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BH Magnetosphere, summary
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There is never a "vacuum gap". Minimum multiplicity is .

A gap develops whenever the local multiplicity drops below .
The null surface is mildly preferred but gap location can be
anywhere between the light surfaces.

The size of the gap is always macroscopic, . However,
electric field does not depend on gap size and is purely
inductive

≲ 1

1

h ∼ rg
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BH Gap Mechanism

Alex Y. Chen 
alexc@astro.princeton.edu Princeton University

What controls the gap size?

Global scale of variation of .

What controls the energy of primary particles?

Primary particles are all radiation damping limited.  in
the gap determines primary Lorentz factor.

ρGJ

E∥
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BH Gap Mechanism
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Scaling of the  field:

Primary particle Lorentz factor:

E

=
E∥

E0
( )

5κℓ2
IC

8πλprg
( )

3(α−1)

4α

ℓIC

λp

ϵmin

mec2

−α
1

α+1

=γp
3

4eE∥

α−1
α

ℓIC

ϵmin

− −−−−−−−−−
√
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Scaling to Real Systems
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Primary Multiplicity

Sgr A*

/λp rg /ℓIC rg γp /Lgap Ljet

M87 2 × 10−8 5 × 10−5 4 × 106 ∼ 20 10−5

2.6 × 10−6 0.023 3 × 107 ≲ 10 0.02
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BH Gap, Future Work
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Most of the dissipation goes into non-thermal radiation.
What is the radiation spectrum?

Nonlinear regime where synchrotron self inverse-Compton is
taken into account.

What happens when the gap electric field grows comparable
to ? We need global simulations.B
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