Electrodynamics of Gaps: Magnetar and Beyond

Alexander Y. Chen

Princeton University

Anatoly Spitkovsky Yajie Yuan Andrei Beloborodov Rui Hu

Third Purdue Workshop on Relativistic Plasma Astrophysics

May 7, 2018

Magnetars: Phenomenology

Magnetars are slowly rotating, isolated neutron stars with extrastrong magnetic field. They are usually bright X-ray sources with luminosity much higher than their spin-down luminosity.

Spin period P and spindown \dot{P} have been measured for most known magnetars. Most have $B > 10^{14}$ G.

Alex Y. Chen

Persistent emission spectrum from 1E 2259+586 (Vogel et. al. 2014)

Photon index for several known persistent magnetars with measured hard X-ray spectrum (Olausen & Kaspi 2014)

Name	Pulsed Emission		Total Emission		$E_{ m cut}(m keV)$			
	Γ^p	$F^p_{ m 20-150 keV}$	Γ^t	$F^t_{ m 20-150 keV}$				
4U 0142+61	0.40(15)	2.68(1.34)	0.93(6)	9.09(35)	279_{-41}^{+65}			
SGR 0501+4516	•••	•••	$0.79\substack{+0.20 \\ -0.16}$	< 3.5	> 100			
1E 1841-045	0.72(15)	~ 4.0	1.32(11)	~ 6.9	> 140			
1E 2259+586	-1.02(24)	~ 5.9	0.4(1)	< 2.0	•••			
1RXS J170849.0	0.86(16)	2.60(35)	1.13(6)	5.2(1.0)	> 300			
Photon index Γ defined by $dN/dE \sim E^{-\Gamma}.$ Therefore $ u F_ u \sim E^{2-\Gamma}$								

Pulse profiles of 1E 2259+586 at different energy bands look completely different (Vogel et. al. 2014)

Alex Y. Chen alexc@astro.princeton.edu

5

Coronal Outflow Model

Gap near the foot of the corona, creating pair outflow which decelerates due to resonant scattering. (Beloborodov 2013)

Alex Y. Chen alexc@astro.princeton.edu

Resonant Scattering

 e^{\pm} near the magnetar can absorb thermal X-ray photons resonantly if the photon energy in its rest frame is $\hbar\omega_B$. This process:

- Provides high energy photons for pair production, $\gamma_{\rm thr}$ depends on local *B* field.
- Applies an effective drag force on the particles
- Produces the observed X-ray spectrum

Resonant Drag on a Single Particle

Simulation of the Twisted Magnetosphere

Movie in 3D

Where is the Gap?

Alex Y. Chen alexc@astro.princeton.edu

Princeton University

11

Radiation Spectrum

1 University

Alex Y. Chen

Persistent emission spectrum from 1E 2259+586 (Vogel et. al. 2014)

Angle-dependent Spectrum

1 University

12.3

Magnetars, Summary

- Resonant scattering has highly nontrivial effect on the global electrodynamics of the twisted magnetar magnetosphere.
- Electron/Ion asymmetry will lead to two qualitatively different hemispheres.
- We can reproduce hard X-ray spectrum from only resonant Alex Y. Cherscattering in PIC simulations. The spectral index is highly alexc@astro.princeton.edu angle dependent.

Pair Discharge in BH Magnetosphere

- In black hole jets, the plasma supply in the funnel region has been a long standing problem.
- Centrifugal barrier prevents accretion material to penetrate into the jet. But plasma is required Alex Y. Cherto conduct the BZ current.

Structure of the BH Magnetosphere

Alex Y. Chen alexc@astro.princeton.edu

15

Where is the Gap?

- At null surface?
- At stagnation surface?
- Near light surfaces?
- Is the gap static?

Alex Y. Chen alexc@astro.princeton.edu

Princeton University

• Is there a limit cycle? If so what is the period and duty cycle?

1D Simulation

• Constant background current density j_B , varying $\rho_{\rm GJ}$. $j_B > c |\rho_{\rm GJ}|$ everywhere.

$$rac{\partial E_r}{\partial t} = 4\pi (j_B - j), \qquad rac{\partial E_r}{\partial r} = 4\pi (
ho -
ho_{
m GJ})$$

• Both the null surface and the stagnation surface are included.

Alex V. Che Two light surfaces inside the box. Outside the light surfaces particles can alexc@astro.princeton.edu only stream one way.

17

Treatment of Light Surfaces

To capture the effect of light surfaces, we imitate the light cylinders of a rotating pulsar.

Alex Y. Chen alexc@astro.princeton.edu

Treatment of Light Surfaces

We consider particle to be "beads on a wire".

$$\mathbf{v} = v_r \hat{\mathbf{r}} + \left(\Omega r \sin heta + eta_\phi v_r
ight) \hat{oldsymbol{\phi}}$$

$$rac{dr}{dt} = v_r = rac{p_r/\gamma mc + eta_\phi^2}{1+eta_\phi^2}$$

 β_{ϕ} becomes ± 1 at the light surfaces, at which point particles can only move in one direction.

Inverse Compton Scattering

We use Monte Carlo method to sample the IC spectrum, assuming a power law background soft photon distribution $I(\epsilon) \propto (\epsilon/\epsilon_{\min})^{-\alpha}$

1D Simulation

BH Magnetosphere, summary

- There is never a "vacuum gap". Minimum multiplicity is $\lesssim 1$.
- A gap develops whenever the local multiplicity drops below 1. The null surface is mildly preferred but gap location can be anywhere between the light surfaces.
- The size of the gap is always macroscopic, $h \sim r_g$. However, Alex Y. Chenelectric field does not depend on gap size and is purely Princeton University inductive

BH Gap Mechanism

- What controls the gap size?
 - Global scale of variation of ρ_{GJ} .
- What controls the energy of primary particles?

Primary particles are all radiation damping limited. E_{\parallel} in Alex Y. Chen alexc@astro.princthedgap determines primary Lorentz factor. Princeton University

BH Gap Mechanism

Scaling of the *E* field:

$$rac{E_{\parallel}}{E_0} = \left(rac{5\kappa\ell_{
m IC}^2}{8\pi\lambda_p r_g} \Big(rac{3(lpha - 1)}{4lpha} rac{\ell_{
m IC}}{\lambda_p} rac{\epsilon_{
m min}}{m_e c^2} \Big)^{-lpha}
ight)^{rac{1}{lpha + 1}}$$

Primary particle Lorentz factor:

$$\gamma_p = \sqrt{rac{3}{4 e E_\parallel} rac{lpha - 1}{lpha} rac{\ell_{
m IC}}{\epsilon_{
m min}}}$$

Alex Y. Chen alexc@astro.princeton.edu

Scaling to Real Systems

	λ_p/r_g	$\ell_{ m IC}/r_g$	Primary γ_p	Multiplicity	$L_{ m gap}/L_{ m jet}$
M87	$2 imes 10^{-8}$	$5 imes 10^{-5}$	$4 imes 10^6$	~ 20	10^{-5}
Sgr A*	$2.6 imes10^{-6}$	0.023	$3 imes 10^7$	$\lesssim 10$	0.02

BH Gap, Future Work

- Most of the dissipation goes into non-thermal radiation. What is the radiation spectrum?
- Nonlinear regime where synchrotron self inverse-Compton is taken into account.
- What happens when the gap electric field grows comparable Alex Y. Cherto B? We need global simulations. Princeton University