

Magnetic dissipation in pulsar winds

Benoît Cerutti, CNRS & Univ. Grenoble Alpes, France. In collaboration with **Sasha Philippov**, UC Berkeley, USA.

Third Purdue Workshop on Relativistic Plasma Astrophysics, West-Lafayette (IN), May 7-9 2018

The "sigma" problem

e.g., Rees & Gunn 1974 Kennel & Coroniti 1984a,b Begelman & Li 1992 Coroniti 1990 Komissarov & Lyubarsky 2004 Lyutikov 2010 Porth+2014 ...

$$\sigma = \frac{B^2}{8 \pi \Gamma n m c^2}$$

Crab

Nebula: σ<<1

Magnetosphere: σ>>1

How and where is the magnetic energy dissipated ? Generic problem in magnetized astrophysical outflows

Vela

The classical picture of pulsar wind nebulae

The σ-problem

Transition σ >> 1 to σ << 1 unknown: "sigma" problem => Dissipation somewhere in between needed!

The equatorial current sheet : The ideal culprit !

Coroniti 1990 ; Michel 1994 ; Lyubarsky & Kirk 2001 ; Kirk & Skjæraasen 2003, Zrake 2016, Zrake & Arons

2016

How far and how fast does magnetic reconnection proceed in the wind?

Close in or at the termination shock ?

y, $[c/\omega_p]$

Striped wind

The numerical challenge

PIC simulations are needed to capture dissipation. We need to probe large radii, very large box **r>>R**_{LC}!!

3D simulations too expansive! => 2D simulations of the oblique rotator!?

The numerical setup

Split monopole

[Michel 1973; Bogovalov 1999]

4096×4096 cells rφ-plane spherical

- logarithmic in r
- uniform in $\boldsymbol{\phi}$

 $r_{max} = 150 R_{LC}$ $R_{LC}/R_* = 3, 6, 9$ $\sigma_* = 250, 1000, 2500$ $\kappa_* = 5, 10, 20$

Neutral e^{+/-} plasma injected from the surface at the E×B drift velocity :

$$V_{\rm r} = \frac{c}{1 + R_{\rm LC}^2/r^2},$$

$$V_{\theta} = 0,$$

$$V_{\phi} = \frac{r\Omega}{1 + r^2/R_{\rm LC}^2}.$$

<u>NB</u>: A "cylindrical" (R φ -plane) pulsar wind does not work ($E_z \neq B_{\varphi}$)

Dissipation within the sheets (between islands)

The whole box

Most dynamical region Formation of plasmoids and mergers

Structure frozen by the expansion of the wind # islands ~ constant

Layer thickness analysis

1. Look for plasma **density minima** along the sheet to **identify X-points**

2. Fit the **transverse density profile** with a gaussian

3. Measure the local sheet width with the Full Width at Half Maximum, $\delta(\mathbf{r})$ =**FWHM**

Expansion of the sheet thickness

Linear expansion of the sheet :

Complete dissipation $\Delta = 1 \Rightarrow r_{diss}/R_{LC} = \pi \Gamma_{LC} \kappa_{LC} \sim 10^3 \cdot 10^6 << R_{shock}/R_{LC}$

diss' LC LC LC LC

See also Lyubarsky & Kirk 2001

Expansion of the sheet thickness

Results consistent with Coroniti (1990) and Michel (1994)

Ampère's law accros the sheet yields $(r >> R_{LC})$:

Important consequence : Current starvation does not happen if there are enough charges to begin with, in agreement with *Arons 2012*, but in contradiction with *Usov 1975*.

Reconnection rate

Appropriately described into the co-moving frame [Lyubarskii 1996 ; Uzdensky & Spitkovsky 2014]

Hard to measure (the wind accelerates) but approximatively constant ~ **0.45 High rate compared with local simulations** of reconnection (~0.1-0.2).

Reconnection driven by large scale plasma motion ?

Wind kinematics

Particle acceleration

Magnetic dissipation in the wind

Particle spectral evolution in the wind

Radiative signatures

Significant pulse-to-pulse variability

Radiative signatures

Synchrotron pulse profiles

Significant pulse-to-pulse variability due to the passage of plasmoids along the line of sight.

Synchrotron emission mostly concentrated **near the light-cylinder.**

=> Gamma-rays probe the **most active regions** of the sheet (formation of islands & merging episodes)

Coming up : Large 3D simulations

Conclusions

- Relativistic reconnection **proceeds in the wind**
- Complete dissipation most likely far before the termination shock radius, $R_{diss}/R_{LC} \sim \kappa_{LC} \sim 10^2 10^5 << R_{shock}$
- Particle distribution "thermalize" into a **narrow distribution** centered around Lorentz factor given by $\sigma_{LC} \sim \Phi_{pc} / \kappa_{LC}$
- => Need better constraints for <u>pair creation @ LC!</u>
- **Current starvation does not happen** as long as there are enough charges to begin with (at LC)
- **Pulsars in binary** systems (transitional ms & γ -ray binaries) good targets to probe magnetic dissipation within the wind as $\mathbf{R}_{shock} \sim \mathbf{R}_{diss}$