
Cosmic Rays: Hunt for Sources
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~E-2.7

Galactic Extra-Gal 

Remarkable power-law (plus “leg” features)

The steepening at ~3PeV suggests a 
rigidity-dependent cut-off

Hillas Criterion



Chemical Composition of Galactic CRs
 “Urban legend”: similar to solar at low energies (e.g., Simpson 1983)
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[H/Fe]solar>104

[H/Fe]CR<10

Biermann & Sigl, 2002



Chemical Composition of Galactic CRs
 “Urban legend”: similar to solar at low energies (e.g., Simpson 1983)

Depends on volatility, on atomic mass A, on first ionization potential…

 Above 1 TeV, fluxes of H, He, CNO, and Fe are comparable!
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DC et al. 2011

Meyer, Drury & Ellison 1997

Nuclei heavier 
than H must be 
injected more 

efficiently



Outline

1) Origin of the elemental composition of Galactic CRs 

2) Role of CRs in SNR evolution 

3) Espresso acceleration of UHECRs
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SNR Paradigm for Galactic Cosmic Rays
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Galactic 



Hybrid simulations of collisionless shocks
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Upstream Flow 

DENSITY + PARTICLES

Out of plane B FIELD
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Shock propagation 

Initial B field

 dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014, Haggerty & DC, see poster)



CR-driven Magnetic-Field Amplification
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DC & Spitkovsky, 2013

Initial B field 
Ms=MA=30



Spectrum evolution
Diffusive Shock Acceleration: non-thermal tail with universal spectrum f(p)∝p-4 

Efficiency: ~15% of the shock bulk energy in accelerated protons!
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Hybrid Simulations
M=10, parallel shock, with singly-ionized nuclei (DC, Yi, Spitkovsky 2017)
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Hybrid Simulations with Heavy Ions

Quasi-parallel shock, M=20 
Ion DSA when proton DSA! 
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DC, Yi & Spitkovsky, 2017
Post-shock Ti scales with Ai

Emax,i scales with Zi

The tail normalization scales with (Ai/Zi)2

Explains CR chemical enhancements!



Helium is not test-particle!
With cosmological He abundance ~10% (DC & Roussi, in prog)

He acceleration efficiency ~15% (as H)

Total efficiency ~30%

Increases shock modification

He can drive waves as much as H

Emax 2x larger for both species

Hadronic gamma-ray emission can be                                                        is 
boosted by a factor ~5 (DC et al, 2011)
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What is the feedback of  
CRs on SNR evolution? 

(and on galaxy formation?)



SNR Evolution in a Thin-Shell (Bisnovatyi-Kogan & Silich, 1995)

Ejecta-dominated stage: RSNR~VSNR t 

Sedov-Taylor (adiabatic) stage: RSNR~t 2/5

Radiative stage (Tsh<~106K)

Pressure-driven snowplow (Phot>P0)

Momentum-driven snowplow (Phot~P0)
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Phot P0

Msh

SNRs deposit energy and momentum in the ISM 
Crucial for feedback that can suppress star formation 

VSNR

RSNR



SNR evolution with CRs
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CR acceleration efficiency ξ (in energy): CRs do not radiate their energy away: more effective expansion

Thin-shell approximation reproduces the Sedov to radiative stage transition (first semi-analytical solution!)

CRs can boost the momentum deposition by factors of 2-10 for typical ISM conditions

Diesing & DC, 2018



SNR evolution with CRs

!15

CR acceleration efficiency ξ (in energy): CRs do not radiate their energy away: more effective expansion

Thin-shell approximation reproduces the Sedov to radiative stage transition (first semi-analytical solution!)

CRs can boost the momentum deposition by factors of 2-10 for typical ISM conditions

Diesing & DC, 2018

Including p-p & 
Coulomb 



And now for something 
completely different… 



Extra-galactic Cosmic Rays
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Extra-Gal 

Sources typically involve relativistic flows



Acceleration at Relativistic Shocks
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Energy gain depends on μf -μi

Following cycles: Ef ~2 Ei 

CAVEAT: return not guaranteed!

UpstreamDownstream

!

Γ

μi=-cos!i

x

y

First cycle: Ef ~Γ2 Ei  (~Compton scattering)

μf

Encounter with the shock: 

in the downstream frame: 

Elastic scattering (e.g., gyration): 

Back in the upstream:

Vietri 1995; Achterberg et al. 2001



Acceleration in Relativistic FLOWS
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Laboratory (Downstream)

Requirement: interface thickness << gyroradius << typical flow size

Most trajectories lead to a ∼Γ2 energy gain!

!

Flow (Upstream)

Γ



Espresso Acceleration of UHECRs
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 SEEDS: galactic CRs with energies up to ~3Z PeV

 STEAM: AGN jets with Γ up to 20-30

Hercules A

ONE-SHOT 
reacceleration can 

produce UHECRs up to 
Emax∼2Γ2 3Z PeV 
Emax∼5Zx109 GeV  

galactic-CR halo



UHECRs from AGN jets: constraints
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Confinement (Hillas Criterion):

Energetics: QUHECR(E≳1018eV)≈5x1045erg/Mpc3/yr 

Lbol ≈ 1043-1045erg/s;   NAGN≈10-4/Mpc3                                  

QAGN ≈ a few 1046-1048erg/Mpc3/yr >> QUHECR

Efficiency depends on:

Reacceleration efficiency (ε>~10-4)

Jet cross section                                                                                    
(angle of a few degrees: ε~10-1-10-2)

✔

✔



Galactic CR + UHECR spectrum
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Prediction of UHECR chemical composition!

UHECR spectra must be quite flat, ~E-1.5        

(Aloisio+13, Gaisser+13, Taylor 14,…)

Different kinds of AGNs?

Mrk 421 in the Telescope Array hotspot!

Knee

DC 2015, 2016

Ankle Cut-off

11

Mrk 421

IC310

Mrk501

1ES 2344+514

Mrk180
1ES 1959+650

AP Lib



Testing Espresso Acceleration - I 
Propagation in synthetic jets with Hamiltonian formalism (DC 2016) 

Γ2  average energy gain independent on BΦ(r); 

Less than Γ2  if gyroradius R >Rjet/2:

!23



Testing Espresso Acceleration - I 
Propagation in synthetic jets with Hamiltonian formalism (DC 2016) 

Γ2  average energy gain independent on BΦ(r); 

Less than Γ2  if gyroradius R >Rjet/2:
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Testing Espresso Acceleration - II

Pluto 3D MHD sims, Γ=10 (e.g., Mignone+10) 

Case A: Jjet<0; Er<0; BΦ<0 (Contopoulos-Kazanas 98) 

Case B: Jjet>0; Er>0; BΦ>0
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Mbarek & DC, in prog



Testing Espresso Acceleration - III
Individual particle trajectories (Mbarek & DC, in prog)

!25Espresso works! Even a few shots: Ef/Ei>Γ2!  

Case A Case B



Implications for UHECRs
Re-acceleration efficiency 10-20% in number

Spectra flatter than injected ones (especially if ion 
photo-disintegration in the AGN is accounted for)
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Mbarek & DC, in prog
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Implications for UHECRs
Re-acceleration efficiency 10-20% in number

Spectra flatter than injected ones (especially if ion 
photo-disintegration in the AGN is accounted for)

UHECRs not very beamed!

Unlikely to point back to blazars
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Mbarek & DC, in prog
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A Summary
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Origin Source
s

Mechanism Emax Spectrum Evidence

Galactic SNRs
Diffusive 

Acceleration at 
non-rel shocks 

3Zx1015 eV Universal ∼E-2 gamma rays 
e.g., Tycho

Extragal AGNs Espresso  
in rel flows? 5Zx1018 eV Galactic, boosted ~Anisotropy~ 

Neutrinos?


