

Cosmic Rays: Hunt for Sources

Remarkable power-law (plus "leg" features)

The steepening at ~3PeV suggests a rigidity-dependent cut-off

Chemical Composition of Galactic CRs

"Urban legend": similar to solar at low energies (e.g., Simpson 1983)

Chemical Composition of Galactic CRs

"Urban legend": similar to solar at low energies (e.g., Simpson 1983)
Depends on volatility, on atomic mass A, on first ionization potential..
Above 1 TeV, fluxes of H, He, CNO, and Fe are comparable!

Nuclei heavier than H must be injected more efficiently

1) Origin of the elemental composition of Galactic CRs

2) Role of CRs in SNR evolution

3) Espresso acceleration of UHECRs

SNR Paradigm for Galactic Cosmic Rays

dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014, Haggerty & DC, see poster)

 $x [c / \omega_{pi}]$

CR-driven Magnetic-Field Amplification

4000

5000

Initial B field M_s=M_A=30

DC & Spitkovsky, 2013

$$n/n_0 \quad (t = 2\omega_c^{-1})$$

$$4000 \quad 5000 \quad 6000 \quad 7000 \quad 8000$$

$$x[c/\omega_p]$$

$$B_{tot} \quad (t = 2\omega_c^{-1})$$

$$4000 \quad 5000 \quad 6000 \quad 7000 \quad 8000$$

$$x[c/\omega_p]$$

$$B_x \quad (t = 2\omega_c^{-1})$$

$$\begin{array}{c} x[c/\omega_{p}] \\ B_{z} \quad (t=2\omega_{c}^{-1}) \\ \\ \hline \\ 400 & 5000 & 6000 & 7000 & 8000 \\ \hline \\ x[c/\omega_{p}] \end{array}$$

6000

7000

Spectrum evolution

Efficiency: ~15% of the shock bulk energy in accelerated protons!

DC & Spitkovsky, 2014a

• Diffusive Shock Acceleration: non-thermal tail with universal spectrum $f(p) \propto p^{-4}$

Hybrid Simulations

M=10, parallel shock, with singly-ionized nuclei (DC, Yi, Spitkovsky 2017)

Hybrid Simulations with Heavy lons

Helium is not test-particle!

With cosmological He abundance ~10% (DC & Roussi, in prog) He acceleration efficiency ~15% (as H) Total efficiency ~30% Increases shock modification He can drive waves as much as H Emax 2x larger for both species Hadronic gamma-ray emission can be boosted by a factor ~5 (DC et al, 2011)

What is the feedback of CRs on SNR evolution? (and on galaxy formation?)

SNR Evolution in a Thin-Shell (Bisnovatyi-Kogan & Silich, 1995)

Secto-dominated stage: R_{SNR}~V_{SNR} t Sedov-Taylor (adiabatic) stage: R_{SNR}~t^{2/5} \oslash Radiative stage (T_{sh} < ~10⁶K) Pressure-driven snowplow ($P_{hot} > P_0$) OMENTATION MARCH AND MA

> SNRs deposit energy and momentum in the ISM Crucial for feedback that can suppress star formation

V_{SNR}

SNR evolution with CRs

CR acceleration efficiency ξ (in energy): CRs do not radiate their energy away: more effective expansion
 Thin-shell approximation reproduces the Sedov to radiative stage transition (first semi-analytical solution!)
 CRs can boost the momentum deposition by factors of 2-10 for typical ISM conditions

And now for something completely different...

Stin Same Rack Minister and State

Stand Son 201 Royand Dr. Balain D. R. BUSING STORES ON BOYAND DE BALANING STUDIE STORE SON 201 BOYAND DE BALA

Extra-galactic Cosmic Rays

Magnetic Field Strength

Acceleration at Relativistic Shocks

μf

Γ

 $J_i = -\cos \vartheta_i$

Encounter with the shock: $\mathbf{p}_{i} \simeq E_{i}(\mu_{i}, \sqrt{1-\mu_{i}^{2}}, 0)$, in the *downstream* frame: $E'_{\mathbf{i}} = \Gamma(E_{\mathbf{i}} - \beta p_{\mathbf{i},x}) = \Gamma E_{\mathbf{i}}(1 - \beta \mu_{\mathbf{i}}),$ $p'_{\mathrm{f},x} \equiv \mu'_{\mathrm{f}}E'_{\mathrm{f}},$ $\mu_{\mathrm{f}} = rac{\mu'_{\mathrm{f}}+eta}{1+eta\mu'_{\mathrm{f}}},$ Elastic scattering (e.g., gyration): Back in the upstream:

$$E_{\mathrm{f}} = \Gamma(E_{\mathrm{f}}' + \beta p_{\mathrm{f},x}') = \Gamma^2 E_{\mathrm{i}}(1 - \beta \mu_{\mathrm{i}})(1 + \beta \mu_{\mathrm{f}}'),$$

Service Energy gain depends on µf-µi

First cycle: $E_f \sim \Gamma^2 E_i$ (~Compton scattering) \odot Following cycles: $E_f \sim 2 E_i$ CAVEAT: return not guaranteed!

Upstream

Vietri 1995; Achterberg et al. 2001

Acceleration in Relativistic FLOWS

Requirement: interface thickness << gyroradius << typical flow size</p>

Laboratory (Downstream)

Flow (Upstream)

Most trajectories lead to a $\sim \Gamma^2$ energy gain!

Espresso Acceleration of UHECRs

SEEDS: galactic CRs with energies up to ~3Z PeV **STEAM:** AGN jets with Γ up to 20-30

galactic-CR halo

Hercules A

ONE-SHOT

reacceleration can produce UHECRs up to $E_{max} \sim 2\Gamma^2 3Z PeV$ $E_{max} \sim 5Z \times 10^9 \, GeV$

UHECRs from AGN jets: constraints

Confinement (Hillas Criterion): $B_{\mu G} D_{kpc} \gtrsim \frac{4}{Z_{26}} \frac{E_{max}}{10^{20} eV}$ © Energetics: Q_{UHECR}(E≈10¹⁸eV)≈5x10⁴⁵erg/Mpc³/yr $L_{bol} \approx 10^{43} - 10^{45} \text{erg/s}; N_{AGN} \approx 10^{-4} / Mpc^{3}$ $Q_{AGN} \approx a \text{ few } 10^{46} - 10^{48} \text{ erg/Mpc}^3/\text{yr} >> Q_{UHECR}$

@Efficiency depends on: \sim Reacceleration efficiency (ϵ >~10-4) Jet cross section (angle of a few degrees: $\epsilon \sim 10^{-1}$ -10⁻²)

Testing Espresso Acceleration - I

 Propagation in synthetic jets with Hamiltonian formalism (DC 2016)
 \circ Γ^2 average energy gain independent on $B_{\phi}(r)$ • Less than Γ^2 if gyroradius $\mathcal{R} > R_{jet}/2$: $\mathcal{E}_{\max}^{(\mathcal{R}>R/2)}$

;
$$\mathcal{E}_{\max}^{(\mathcal{R} < R/2)} = \Gamma^2 (1 - \beta \tilde{\mu}_i)(1 + \beta) \simeq 2\Gamma^2$$

$$= (1 - \beta \tilde{\mu}_{\rm i}) \left[1 + \Gamma^2 \beta \frac{R}{\mathcal{R}} \right] \simeq \Gamma^2 \frac{R}{\mathcal{R}}$$

Testing Espresso Acceleration - I

Propagation in synthetic jets with Hamiltonian formalism (DC 2016) \odot Γ^2 average energy gain independent on $B_{\phi}(r)$ • Less than Γ^2 if gyroradius $\mathcal{R} > R_{jet}/2$: $\mathcal{E}_{\max}^{(\mathcal{R}>R/2)}$

;
$$\mathcal{E}_{\max}^{(\mathcal{R} < R/2)} = \Gamma^2 (1 - \beta \tilde{\mu}_i)(1 + \beta) \simeq 2\Gamma^2$$

$$= (1 - \beta \tilde{\mu}_{i}) \left[1 + \Gamma^{2} \beta \frac{R}{R} \right] \simeq \Gamma^{2} \frac{R}{R}$$

Testing Espresso Acceleration - II

Testing Espresso Acceleration - III

Individual particle trajectories (Mbarek & DC, in prog)

Espresso works! Even a few shots: $E_f/E_i > \Gamma^2!$

Implications for UHECRs

- Re-acceleration efficiency 10-20% in number
- Spectra flatter than injected ones (especially if ion) photo-disintegration in the AGN is accounted for)
- OUTECRs not very beamed!
 - Onlikely to point back to blazars

Implications for UHECRs

A Summary

Origin	Source	Mechanism	E _{max}	Spectrum	Evidence
Galactic	SNRs	Diffusive Acceleration at non-rel shocks	3Zx10 ¹⁵ eV	Universal ~ E-2	gamma rays e.g., Tycho
Extragal	AGNs	Espresso in rel flows?	5Zx10 ¹⁸ eV	Galactic, boosted	~Anisotropy~ Neutrinos?
y → HiRes/MIA + Akeno 20 km ² + Akeno 1 km ² → AUGER → HiRes/MIA = KASCADE (e/m QGSJET) = KASCADE (e/m QGSJET) = KASCADE (e/m SIBYLL) ↓ SUGAR ⊗ Tibet ASγ ⊗ Tibet ASγ ♥ Tunka-25					

