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Evidence is presented for the finite wave vector crossing of the two lowest one-dimensional spin-split

subbands in quantum point contacts fabricated from two-dimensional hole gases with strong spin-orbit

interaction. This phenomenon offers an elegant explanation for the anomalous sign of the spin polarization

filtered by a point contact, as observed in magnetic focusing experiments. Anticrossing is introduced by a

magnetic field parallel to the channel or an asymmetric potential transverse to it. Controlling the

magnitude of the spin splitting affords a novel mechanism for inverting the sign of the spin polarization.
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The control of spin-dependent transport in semiconduc-
tors is a central theme of fundamental and technological
relevance [1,2]. For holes, strong effects of the spin-orbit
coupling have been observed in low-dimensional struc-
tures [2–7], and interest in the transport properties of
quantum point contacts (QPCs) has also been spurred by
investigations of the so-called 0.7 anomaly [8–10]. In such
hole QPCs, an intriguing and still unexplained observation
is the anomalous sign of the spin polarization revealed by
magnetic focusing experiments [4,8,9,11].

It is well known that an asymmetric potential confining
electrons or holes in 2D generates an intrinsic spin-orbit
interaction (the so-called Rashba effect [12]). However, the
resulting spin-orbit coupling is very different in the two
cases: for holes it is approximately cubic in momentum
instead of being linear as for electrons [2,3]. We show here
that the presence of cubic Rashba spin-orbit coupling
explains the anomalous sign in the QPC transmission
and, based on this, we suggest how to control the sign of
the spin polarization.

Our magnetic focusing devices are fabricated from a
high mobility (� 0:4� 106 V � s=cm2) shallow 2D hole
gas [13] using an atomic force microscopy (AFM) local
anodic oxidation technique; see inset in Fig. 1(a). The
devices consist of two QPCs oriented along the ½33�2�
crystallographic direction, with lithographical distance
L ¼ 0:8 �m between their centers. The actual distance is
smaller due to large repulsive voltages on the side gates
(� 0:2 V) and attractive on the center gate (� 0:3 V).
Conductance of both QPCs and the nonlocal focusing
signal was measured using standard ac lock-in techniques
with excitation current 1 nA at a base temperature
T ¼ 25 mK. The focusing signal Vfoc is defined as the
voltage across the detector QPC in response to the current
flowing through the injector QPC; see [4,9] for details.
In the presence of perpendicular magnetic field B< 0,

Shubnikov–de Haas (SdH) oscillations in the adjacent 2D
gas are observed, see Fig. 1(a), and the measured hole
density is p ¼ 1:45� 1011 cm�2. For B> 0 several peaks
due to magnetic focusing are superimposed onto the SdH
oscillations. When the conductance of both QPCs is tuned

FIG. 1 (color online). (a) Voltage across the detector QPC as a
function of magnetic field for zero tilt angle. Insets: AFM
micrograph of a sample, where arrows schematically show the
cyclotron motion for the two spin orientations; the bars are
0:5 �m scales. (b) Signal for the first focusing peak in a tilted
magnetic field. Curves are offset for clarity. The values of Ginj

for dashed blue (solid red) curves are within the smaller (larger)
rectangles in the injector QPC characteristic in (c). (d) Relative
population of the spin subbands, estimated for Ginj ¼ 2e2=h

(blue squares) and Ginj � 0:3� 2e2=h (red dots).
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to be 2e2=h, the first focusing peak splits into two peaks. If
the conductance of the injector QPC is Ginj < 2e2=h, the

rightmost peak is slightly suppressed, which has been
interpreted as spontaneous polarization [8].

Applying Bk along ½33�2� affects the energies of the spin
subbands without affecting the cyclotron motion.
Experimentally this is achieved by tilting the sample.
The focusing data in a tilted magnetic field are plotted in
Fig. 1(b) [14]. When Ginj ¼ 2e2=h, no filtering is expected

and, indeed, both focusing peaks have approximately the
same height as at � ¼ 0. With the increase of the tilt angle,
the Zeeman splitting of the spin subbands in a 2D gas
increases. For Ginj < 2e2=h preferential transmission of

the largest kF spin subband is expected for electrons, which
corresponds to a suppression of the left peak. Instead, in a
hole gas we observe suppression of the right peak up to
� � 85� (Bk � 2:5 T); see Fig. 1(b). For � > 85� the right

peak reappears. The data are summarized in Fig. 1(d),
where polarization P ¼ ðVleft � VrightÞ=ðVleft þ VrightÞ is

plotted as a function of the total field hBi ¼ ðBright þ
BleftÞ=2, averaged between the positions of the two peaks,
with Vleft and Vright focusing signals for the left and right

peaks [9].
The anomalous behavior of P cannot be explained with

linear Rashba spin-orbit coupling (see [11] for a theoretical
analysis). On the other hand, as we will show, it naturally
follows from the Rashba spin-orbit coupling for 2D holes,

of the form i�
2 ðp̂3��̂þ � p̂3þ�̂�Þ [2,3]. Here, p̂�¼ p̂x� ip̂y

and �̂� ¼ �̂x � i�̂y, with �̂ the Pauli matrices. Such cubic

spin-orbit interaction is responsible for a peculiar disper-
sion of the lowest two 1D subbands. For a channel with
lateral extent W, aligned with the x axis, we can substitute
hp2

yi � ð@�=WÞ2 and hpyi � 0 in the 2D Hamiltonian,

which gives

Ĥ 1D ¼ p̂2
x

2m
þ �

�
3@2�2

W2
p̂x � p̂3

x

�
�̂y þ @

2�2

2mW2
: (1)

Because of the lateral confinement, a linear spin-orbit
coupling term appears in Eq. (1), which is dominant at
small momenta but coexists with a cubic contribution with
opposite sign. Therefore, the spin subbands cross not only

at kx ¼ 0 but also at the finite wave vectors kx ¼
� ffiffiffi

3
p

�=W. This is at variance with the Rashba spin-orbit
splitting for electrons, which is monotonically increasing
(linear in momentum) both in 2D and 1D.

To confirm Eq. (1), we solved the 3D problem in the
framework of the Luttinger Hamiltonian. We take into
account the full cubic symmetry and consider a quantum
well with growth direction [113], as in the experiment. An
electric field Ez along the confinement direction produces
Rashba spin-orbit coupling and the energy splitting is �k3

in 2D. We then introduce a lateral confinement potential
and obtain 1D subbands, plotted in Fig. 2. For simplicity,
we choose hard wall confining potentials. The 1D bands
clearly display the main feature we are interested in: the

presence of a crossing point at finite wave vector. We also
checked that bulk-inversion asymmetry terms [2,15] only
introduce minor modifications in Fig. 2 and that by setting
Ez ¼ 0 a small spin splitting survives, which, however,
does not induce crossing of the lowest two 1D subbands.
For this reason, we have neglected the Dresselhaus spin-
orbit terms [6] in the effective 2D and 1D Hamiltonians.
As seen in the inset of Fig. 2 (top panel), the degener-

acies at kx ¼ 0 and finite kx are removed when Bk � 0.
Within the effective Hamiltonian (1), the external magnetic
field is taken into account by adding a Zeeman term
g	�BBk�̂x=2, where g	 is the effective g factor [5] and

�B the Bohr magneton. The total effective magnetic field,
which includes the spin-orbit interaction, depends on the
values of W and kx as follows:

~B effðW; kxÞ ¼ Bkx̂þ 2�@3

g	�B

�
3�2

W2
kx � k3x

�
ŷ; (2)

where x̂; ŷ are unit vectors along the coordinate axes. The
eigenstates of Eq. (1), cWðkx;�Þ ¼ eikxxjkx;�iW , have
spinor functions jkx;�iW parallel or antiparallel to ~Beff

and energies

��ðW; kxÞ ¼ @
2k2x
2m


 1

2
g	�Bj ~BeffðW; kxÞj: (3)

At kx ¼ 0 and kx ¼ � ffiffiffi
3

p
�=W the spin splitting is

g	�BBk; i.e., it is only due to the external magnetic field.

In a realistic QPC the width WðxÞ of the lateral confine-
ment changes along the channel. As in [16] we assume a
sufficiently smooth variation of the width, such that the
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FIG. 2 (color online). Energy subbands of 1D channels ob-
tained from a 15 nm quantum well grown in the [113] direction.
An electric field Ez ¼ 1 V=�m along [113] is present. The
lateral confinement has width W ¼ 40 nm. Upper panel: Wire
along ½33�2�. The inset shows the energy splitting of the two
lowest subbands at several values of Bk. The solid curve is for

Bk ¼ 0 and the dashed curves for Bk ¼ 0:5; 1; 1:5; 2 T. Lower
panel: Wire along ½1�10�. The inset shows the energy splitting
with a lateral electric field. The solid curve is for Ey ¼ 0 and the

dashed curves for Ey ¼ �12:5;�37:5 V=mm (the splitting is

reduced for positive values of Ey).
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holes adiabatically follow the lowest orbital subband.

Introducing in Eq. (1) the x-dependent width WðxÞ ¼
W0e

x2=2�x2 , where �x is a typical length scale of the
QPC and W0 its minimum width, we obtain the following
effective Hamiltonian:

p̂2
x

2m
þ Vðx̂Þ þ g	�B

2
Bk�̂x þ �½3mfVðx̂Þ; p̂xg � p̂3

x��̂y;

with fa; bg ¼ abþ ba [17]. The potential barrier has the
following form:

VðxÞ ¼ @
2�2

2mWðxÞ2 ¼
@
2�2

2mW2
0

e�x2=�x2 ; (4)

As it will be presently made clear, the main qualitative
conclusions are independent of the detailed form of the
potential, but Eq. (4) allows us to solve explicitly the 1D
transmission problem and obtain the spin-resolved con-
ductance in the Landauer-Büttiker formalism. The scatter-
ing eigenstates are obtained with incident wave functions
cW¼1ðk�;�Þ at x � ��x, where � ¼ � denotes the

spin subband and k� are determined by the Fermi energy
�F, at which the holes are injected in the QPC. For x��x,
such QPC wave functions have the asymptotic formP

�¼�t�;�c1ðk�; �Þ, where t�;� are transmission ampli-

tudes. The spin-resolved conductances are simply given

by G� ¼ e2

h

P
�¼�

v�
v�

jt�;�j2 [18], where the Fermi veloc-

ities are v� ¼ @��ð1;k�Þ
@@kx

, from Eq. (3). The total conduc-

tance isG ¼ Gþ þG�. Typical results at several values of
Bk are shown in Fig. 3. As usual, by opening the QPC,

a current starts to flow above a minimum value of W0. The
spin polarization behaves as follows.

(i) At Bk ¼ 0 T we obtain a structureless unpolarized

conductance (Gþ ¼ G�), but we find G� >Gþ at larger
values of the magnetic field (see the top right panel of
Fig. 3, at Bk ¼ 3 T); i.e., the holes in the higher spin

subband have larger transmission at the first plateau. The
sign is opposite to the case of linear Rashba spin-orbit
coupling (see [11]) and in agreement with the experimental
results of Fig. 1.
(ii) At Bk � 7 T (see the bottom left panel of Fig. 3),

Gþ ’ G� and the transmission becomes unpolarized, as
observed in the data of Fig. 1.
(iii) At even larger values of Bk > 7 T, we obtain Gþ ’

e2=h, G� ’ 0 (bottom right panel of Fig. 3). Although this
regime is yet to be experimentally investigated, this repre-
sents a natural prediction of our theory: at sufficiently large
magnetic field the role of the spin-orbit coupling becomes
negligible and the spin direction (parallel or antiparallel to
the external magnetic field) of the holes is conserved. The
injected holes remain in the original (‘‘þ’’ or ‘‘�’’) branch
and the current at the first plateau is polarized in the ‘‘þ’’
band, which has lower energy. Deviations from this behav-
ior are due to nonadiabatic transmission in the spin sub-
bands, and, to gain a qualitative understanding, we
consider next a semiclassical picture of the holes.
When a hole wave packet is at position x, it is subject to

a magnetic field ~Beff determined by WðxÞ and kxðxÞ as in
Eq. (2). For holes injected at �F, the momentum is deter-
mined by energy conservation. Treating the spin-orbit
coupling as a small perturbation compared to the kinetic

energy, we have kxðxÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � �2=WðxÞ2

q
, where kF ¼ffiffiffiffiffiffiffiffiffiffiffiffi

2m�F
p

=@ is the Fermi wave vector in the absence of
spin-orbit coupling. Therefore, the injected hole experien-
ces a varying magnetic field in its semiclassical motion
along x, due to the change of both kx and WðxÞ. For
adiabatic transmission of the spin subbands the spin fol-
lows the direction of the magnetic field, but this is not
possible in general if Bk is sufficiently small. In particular,

for Bk ¼ 0 Eq. (1) implies that �̂y is conserved. Therefore,

the initial spin orientation along y is not affected by the

motion of the hole. On the other hand, ~Beff of Eq. (2)

changes direction when kx ¼
ffiffiffi
3

p
�=W and Bk ¼ 0. After

this point, a hole in the ‘‘þ’’ branch continues its motion in
the ‘‘�’’ branch and vice versa.
At finite in-plane magnetic field the degeneracy of the

spectrum is removed but the holes do not follow adiabati-
cally the spin branch, unless the Landau-Zener condition
dBy=dt

Bk
� !B is satisfied, where @!B ¼ g	�BBk. The

change �By in the spin-orbit field is obtained from

Eq. (2): jByj is equal to 2�@3k3F=g
	�B far from the QPC

and vanishes at the degeneracy point. This change occurs
on the length scale �x of the QPC and we can estimate the
time interval with �t ’ �x=v where v is a typical velocity
of the hole. This gives

Bk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�By

g	�B�t

s
’ @

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k3Fv=�x

q
g	�B

: (5)

To estimate v at the degeneracy point kx ¼
ffiffiffi
3

p
�=W, we

solve
ffiffiffi
3

p
�=W ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � �2=W2

q
to obtain kx ¼

ffiffi
3

p
2 kF.
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FIG. 3 (color online). Total conductanceG (black solid curves)
and spin-resolved conductances Gþ (blue, long-dashed curves)
and G� (red, short-dashed curves), plotted in units of 2e2=h as
functions of the minimum widthW0 of the QPC [see Eq. (4)]. We
used parameters appropriate for the experimental setup: m ¼
0:14m0 [20], where m0 is the bare electron mass, g	 ¼ 0:8 [5],
�@3 ¼ 0:45 eV nm3, �x ¼ 0:3 �m, and �F ¼ 2:3 meV.
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Therefore, v is large at the degeneracy point (v ’ vF,
where vF ¼ @kF=m is the Fermi velocity), and to follow
adiabatically the spin branches requires a large external
field. The crossover occurs for

B	 ’ ð@kFÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@=ðm�xÞp
g	�B

: (6)

This expression gives B	 ’ 7:4 T with the parameters of
Fig. 3, in agreement with the more accurate numerical
analysis. Below B	, holes injected in the ‘‘þ’’ band cross

nonadiabatically to the ‘‘�’’ spin branch when kx ’ffiffiffi
3

p
�=W. Therefore, holes injected in the lower subband

have higher energy at x ’ 0 and are preferentially reflected,
as seen in the top right panel of Fig. 3 with Bk ¼ 3 T. The
reflection is not perfect, due to nonadiabaticity at kx ’ 0: at
this second quasidegenerate point the ‘‘�’’ holes can cross
back to the ‘‘þ’’ branch and be transmitted. We attribute to
this effect the enhanced conductivity G> e2=h at the first
conductance plateau in the top right panel of Fig. 3, while a
well-defined e2=h plateau is obtained at larger magnetic
field. In fact, the adiabatic approximation becomes accu-
rate at kx ’ 0 for smaller values of Bk [19] than B	.

The above discussion makes it clear that the degeneracy

of the hole spectrum at kx ¼
ffiffiffi
3

p
�=W is crucial to obtain

the anomalous transmission of Figs. 1 and 3. The special
behavior we have described cannot be realized with linear
Rashba spin-orbit coupling [11]. Furthermore, Eq. (6)
allows us to predict how the value of the crossover field
can be controlled. A lower value of B	 can be obtained with
a smaller coupling �, a smoother QPC (i.e., larger�x), or a
lower hole gas density (i.e., smaller kF). The value of the
Fermi wave vector has a large influence, since it contrib-
utes both to the spin splitting �@3k3F and to the velocity vF

of the holes.
It is also remarkable that the degeneracy of the 1D

spectrum at finite kx is removed for a channel oriented
along the ½1�10� direction, as shown in the bottom panel of
Fig. 2. The reason is that the lateral confinement is along
the low symmetry direction ½33�2� and the mirror symmetry
of the channel is broken by the crystalline potential. At the
anticrossing, we obtain a �0:1 meV splitting (see inset).
For the other orientation of the wire this splitting corre-
sponds to a magnetic field Bk � 1 T, and it is therefore

quite sizable. This also suggests that it should be possible
to modify the spin splitting, and thus the crossover field B	,
via electric gates. We consider in the second inset of Fig. 2
an electric field Ey in the transverse direction of the channel

and obtain that the splitting can be either reduced or
increased by varying Ey. In contrast to the case Bk � 0,

the degeneracy at kx ¼ 0 is not lifted by the transverse
electric field.

In conclusion, we have shown that the cubic Rashba
spin-orbit coupling for holes provides an explanation of the

anomalous sign of the spin polarization observed in QPCs
in 2D hole gases. The theory nicely explains the presence
of a crossover field B	 at which the transmission is unpo-
larized, predicts that above B	 a polarization in the lowest
spin subband is recovered, and indicates how the value of
B	 can be modified.
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