

Particle Physics (concise summary)

QuarkNet summer workshop June 24-28, 2013

Matter Particles

- Quarks:
 u c t
 d s b
- Leptons:

$$\begin{array}{cccc}
u_e &
u_\mu &
u_ au \\
e^- & \mu^- &
au^- \end{array}$$

Anti-matter Particles

- Anti-quarks:
 - $\begin{array}{ccc} \overline{u} & \overline{c} & \overline{t} \\ \overline{d} & \overline{s} & \overline{b} \end{array}$
- Anti-leptons:

$$\begin{array}{ccc} \overline{\nu_e} & \overline{\nu_\mu} & \overline{\nu_\tau} \\ e^+ & \mu^+ & \tau^+ \end{array}$$

Hadrons

• "Stable" bound states of quarks

• Baryons: three quarks

$$p = (uud), \quad n = (udd), \quad \Lambda = (uds)$$

 $\bar{p} = (\bar{u}\bar{u}\bar{d}), \quad etc \dots$

• Mesons: quark-antiquark

$$\pi^{+} = \begin{pmatrix} u\bar{d} \end{pmatrix} \quad \pi^{-} = (\bar{u}d) \quad K^{+} = (u\bar{s})$$
$$B^{0} = \begin{pmatrix} \bar{b}d \end{pmatrix} \quad \bar{B}^{0} = (b\bar{d})$$

Masses

• Charged leptons:

$$m_e = 0.511 \, MeV/c^2$$

 $m_\mu = 106 \, MeV/c^2$
 $m_\tau = 1778 \, MeV/c^2$

• Neutrinos:

 $m_{\nu} \approx 0$

• Mesons:

$$m_{\pi} = 140 \; MeV/c^2$$

 $m_K = 495 \; MeV/c^2$
 $m_D = 1865 \; MeV/c^2$
 $m_B = 5280 \; MeV/c^2$

• Baryons:

$$m_p \approx m_n = 940 \; MeV/c^2$$

 $m_\Lambda = 1116 \; MeV/c^2$

Internal Structure

- The leptons have no internal structure but the hadrons are made of quarks
- Lots of mesons have the same quark content, but different masses.
- Just like the Bohr atom can have its electrons in excited orbitals, the quarks can also be in excited states:

$$\begin{bmatrix} N & S \\ \downarrow & \downarrow \\ S & \downarrow \\ N \end{bmatrix} = \begin{bmatrix} \pi^{+} & I \\ m_{\pi} = 140 \ MeV/c^{2} \end{bmatrix} \begin{bmatrix} N & N \\ \downarrow & \downarrow \\ S & \downarrow \\ S & J \end{bmatrix} = \begin{bmatrix} \rho^{+} \\ m_{\rho} = 770 \ MeV/c^{2} \end{bmatrix}$$
Lowest energy – low mass Higher energy – higher mass

Electric Charge

• Quarks:

$$Q = +2/3$$
 u c t
 $Q = -1/3$ d s b

• Leptons:

• Anti-particles have opposite electric charge

Color Charge

- Quarks carry a different kind of charge: "color"
- Three types of "color" charge: red, green, blue
- Hadrons are colorless combinations of quarks

p = (uud) $\pi^+ = (ud)$ red+green+blue red+anti-red

• Leptons don't carry color charge

- They are said to be "colorless"

"Weak Hypercharge"

• Quarks:

$$I = +1/2$$
 u c t
 $I = -1/2$ d s b

• Leptons:

$$I = +1/2 \qquad \nu_e \qquad \nu_\mu \qquad \nu_\tau \\ I = -1/2 \qquad e^- \quad \mu^- \quad \tau^-$$

Forces

- Four known forces in nature:
 - 1. Strong force
 - 2. Electromagnetic force
 - 3. Weak force
 - 4. Gravity
- We don't know how to make a good quantum theory of gravity, so we will ignore it.
 - String theory is a good candidate, but it has other problems.

Electromagnetic Force

- Affects particles with electric charge
 - Everything except the neutrinos
- We don't like freaky voodoo like "action at a distance"
- Electric/magnetic fields are mediated by photons
- Electric charge is always conserved
- Photons are electrically neutral
- Electromagnetic forces decrease as $1/r^2$

Strong Force

- Affects only particles with color charge – Only quarks, not the leptons
- Strong force mediated by "gluons"
- Strong force conserves quark "flavor" the type of quark doesn't change
- Gluons also have color charge, so they can couple to themselves!
- Strong force decreases like $1/r^2$ for short distances but *increases* linearly for large distances (like a spring)

No Free Quarks

• Try to pull a quark out of a proton:

• Energy stored in the spring: $U = \frac{1}{2}k x^2$

No Free Quarks

• Try to pull a quark out of a proton:

No Free Quarks

• Try to pull a quark out of a proton:

• We made a pion and a neutron, but couldn't pull out a free quark...

Weak Force

- Affects particles with "weak hypercharge"
 That would be all of them...
- Two types of weak force carriers:
 - Charged currents: $W^{\pm} m_W = 80 \ GeV/c^2$
 - Neutral current: Z^0 $m_Z = 91 \ GeV/c^2$
- The Z^0 behaves like a very heavy photon
- The W changes the charge of the quarks or leptons it interacts with

Weak Force

• Neutron decay:

$$(udd) \rightarrow (uud) + e^{-} + \overline{\nu_{e}}$$
$$d \rightarrow u W^{-}$$
$$W^{-} \rightarrow e^{-} \overline{\nu_{e}}$$

- The weak interaction makes this decay possible
- This is the only thing the neutron can decay into without violating energy conservation.
- The W is very heavy, but we can "borrow" energy from the Heisenberg uncertainty principle, provided we give it back before anyone notices.

Weak Force

• Apparently, lepton family number seems to be conserved:

 $-W^+ \rightarrow e^+ \nu_e$ or $W^+ \rightarrow \mu^+ \nu_\mu$ but never $W^+ \rightarrow e^+ \nu_\mu$

• However, the weak force doesn't conserve quark family number:

 $-W^+ \rightarrow c\bar{s}$ dominates, but we also have $W^+ \rightarrow c\bar{d}$

• This is the only way for heavy quarks to decay into lighter quarks.

Higgs Boson

- The particle that gives mass to everything is the Higgs Boson
- Apparently, its mass is about $m_H = 125 \ GeV/c^2$
- Likes to decay into heavy things, but the top quark is too heavy
 - $-H^0 \rightarrow b\overline{b}$ dominates but is very hard to detect
 - $-H^0 \rightarrow \gamma \gamma$ is very rare, but also very unique

Lifetimes

- If a particle can decay, then it will decay.
- The decay rate depends on
 - The strength of the force
 - The amount of energy released
- Short lifetimes:
 - $-\pi^0 \rightarrow \gamma \gamma$ (electromagnetic decay)
 - $-\Delta^{++}(uuu) \to p(uud)\pi^+(u\bar{d})$
- Long lifetime:

$$-\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$$
 (2.2 µs)
 $-n \rightarrow p e^- \bar{\nu}_e$ (15 minutes)

Interactions with Matter

- All charged particles ionize the matter they move through
 - They bend in a magnetic field
 - Photons and neutrinos don't leave "tracks"
 - Neither do neutrons or neutral kaons
- Hadrons interact with atomic nuclei
 - Quarks interact with other quarks because of the strong nuclear force
 - At high energy the quarks get close enough to see the color charges inside the colorless hadrons

Electrons and Photons

- Electrons are very light so they are easy to accelerate
- An accelerated electron can emit a gamma ray
- A gamma ray can convert to an e^+e^- pair
- Photons and electrons rapidly lose all their energy in dense matter.
- They go splat...

Muons

- Muons don't have color charge so they don't interact with quarks
- The ionize material, but they don't lose energy very quickly
- They can penetrate more material than any other charged particle
 - That's why we observe mostly muons in cosmic rays

Particle Identification

Neutrinos

- Neutrinos are electrically neutral, so we they don't leave tracks in a detector
- They don't have color charge, so they don't interact with quarks
- The can only interact weakly, but this happens very rarely
- Not very easy to detect...

Neutrinos

Other Things?

- Astronomical and cosmological observations seem to suggest that there is something else...
 – Dark Matter
- The Standard Model continues to make many theorists nervous
 - They fix it up by adding new particles to the theory (supersymmetry)
 - But so far, no experimental evidence for anything new