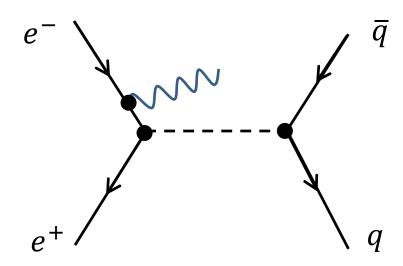


Physics 56400 Introduction to Elementary Particle Physics I


Lecture 21 Fall 2019 Semester

Prof. Matthew Jones

LEP 1.5 - \sqrt{s} = 130 - 140 GeV

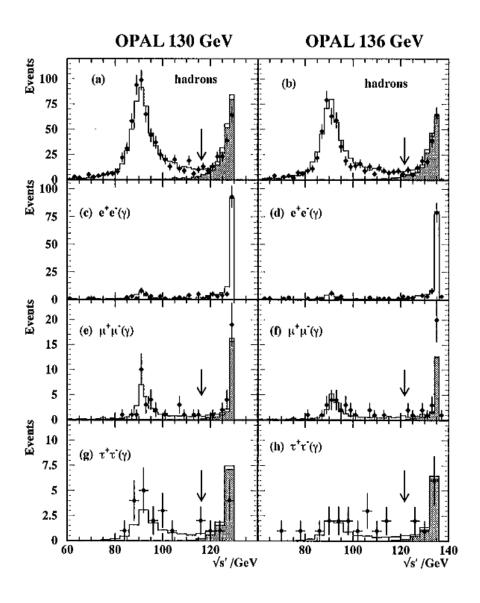
- In 1995, LEP operated at energies significantly above the Z mass but below the W^+W^- threshold.
- The cross section is lower than the peak cross section at $\sqrt{s} = M_Z$ by about a factor of 1000
- Nevertheless, at this energy, the γ and Z-exchange amplitudes are similar in magnitude.
- Important to distinguish events in which initial state radiation reduces the effective center-of-mass energy.

Initial State Radiation

- The incoming e^- (or e^+) can radiate a photon so that the effective center-of-mass energy is close to M_Z .
- In about 20% of events, the photon is reconstructed in the electromagnetic calorimeter.
- If the photon is radiated at small angles, it might not be observed in the detector.

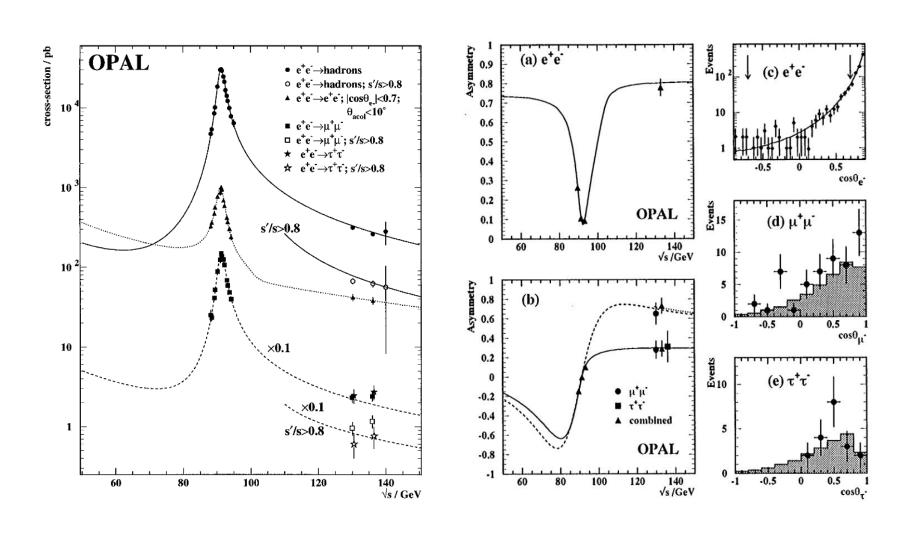
Initial State Radiation

Suppose the electron radiates a photon


$$\begin{split} E_{e^{-}}' &= \frac{\sqrt{s}}{2} - E_{\gamma}, \, \vec{p}_{e^{-}} = (\frac{\sqrt{s}}{2} - E_{\gamma}) \hat{z} \\ E_{e^{+}} &= \frac{\sqrt{s}}{2}, \, \vec{p}_{e^{+}} = -\frac{\sqrt{s}}{2} \hat{z} \end{split}$$

Effective center-of-mass energy:

$$s' = (\sqrt{s} - E_{\gamma}, -E_{\gamma}\hat{z})^2 = s - 2E_{\gamma}\sqrt{s}$$


When the photon is reconstructed, its 3-momentum can be used instead.

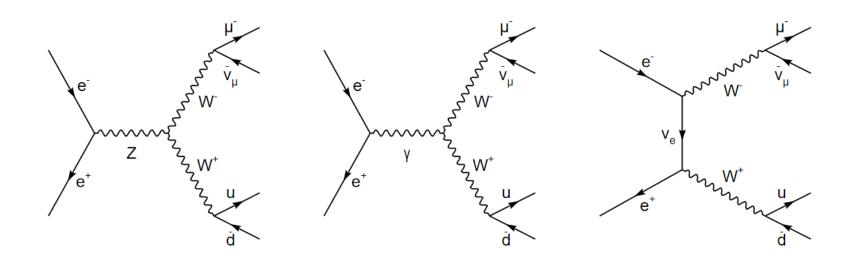
Initial State Radiation at LEP 1.5

Events with initial state radiation are suppressed by requiring s'/s > 0.8.

Cross Sections and A_{FB}

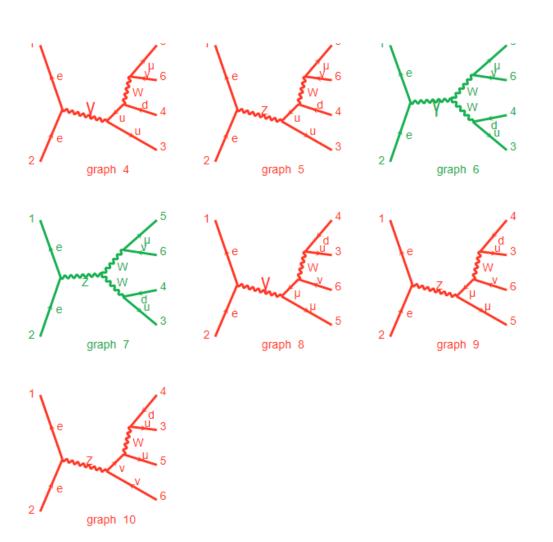
LEP 2 – Above the W^+W^- Threshold

- From LEP 1 we knew that $M_Z = 91 \; \mathrm{GeV} \; \mathrm{and} \;$ $\sin^2 \theta_W = 0.22 \;$
- The W mass is:


$$M_W = M_Z \cos \theta_W = 80 \text{ GeV}$$

• Center-of-mass energy must be at least 160 GeV to produce W^+W^-

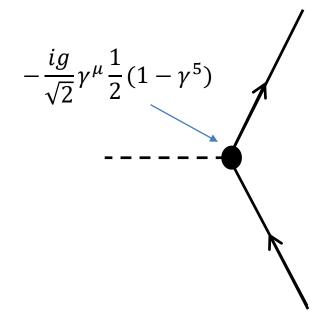
Overview of LEP performance from 1989 to 2000. $\int \mathcal{L}dt$ is the luminosity integrated per experiment over each year and I_{tot} is the total beam current $2k_{\rm b}I_{\rm b}$. The luminosity \mathcal{L} is given in units of $10^{30}{\rm cm}^{-2}{\rm s}^{-1}$.


Year	$\int \mathcal{L}dt$	$E_{ m b}$	$k_{ m b}$	I_{tot}	\mathcal{L}
	(pb^{-1})	$({\rm GeV/c^2})$		(mA)	
1989	1.74	45.6	4	2.6	4.3
1990	8.6	45.6	4	3.6	7
1991	18.9	45.6	4	3.7	10
1992	28.6	45.6	4/8	5.0	11.5
1993	40.0	45.6	8	5.5	19
1994	64.5	45.6	8	5.5	23.1
1995	46.1	45.6	8/12	8.4	34.1
1996	24.7	80.5 - 86	4	4.2	35.6
1997	73.4	90 - 92	4	5.2	47.0
1998	199.7	94.5	4	6.1	100
1999	253	98 - 101	4	6.2	100
2000	233.4	102 - 104	4	5.2	60

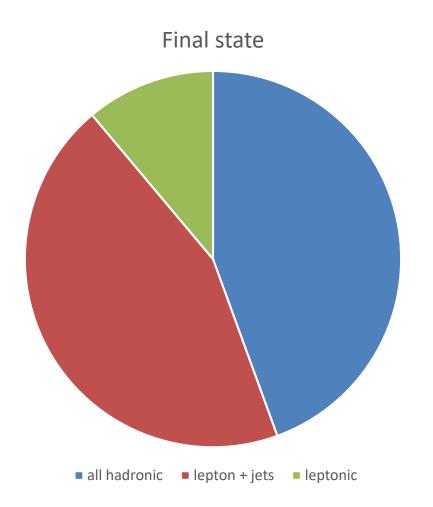
Production of W^+W^-

- There are three possible Feynman amplitudes
- There are five additional amplitudes that lead to the same final state that do not correspond to "real" W^+W^- production.

Production of W^+W^-

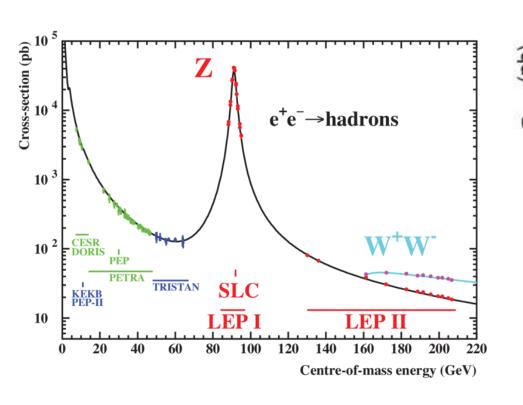

Decays of W^{\pm}

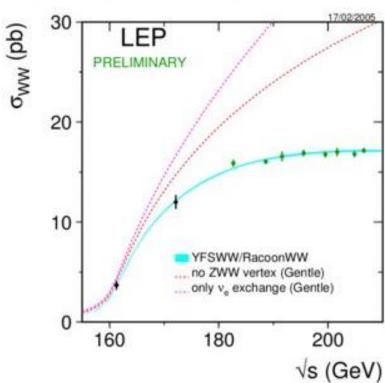
- Universal coupling to fermions
- Quarks come in three possible colors


$$\frac{\Gamma_{f\bar{f}}}{\Gamma_{total}} = \frac{N_c}{2 \times 3 + 3}$$

$$\frac{\Gamma_{c\bar{s}}}{\Gamma_{c\bar{s}}} = \frac{\Gamma_{u\bar{d}}}{\Gamma_{total}} = \frac{1}{3}$$

$$\frac{\Gamma_{\ell^+\nu_{\ell}}}{\Gamma_{total}} = \frac{1}{9}$$


Decays of W^+W^-

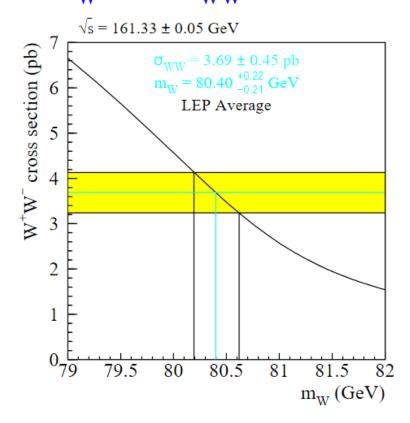


Tests of lepton universality:

$$g_{\mu}/g_e = 1.001 \pm 0.016$$

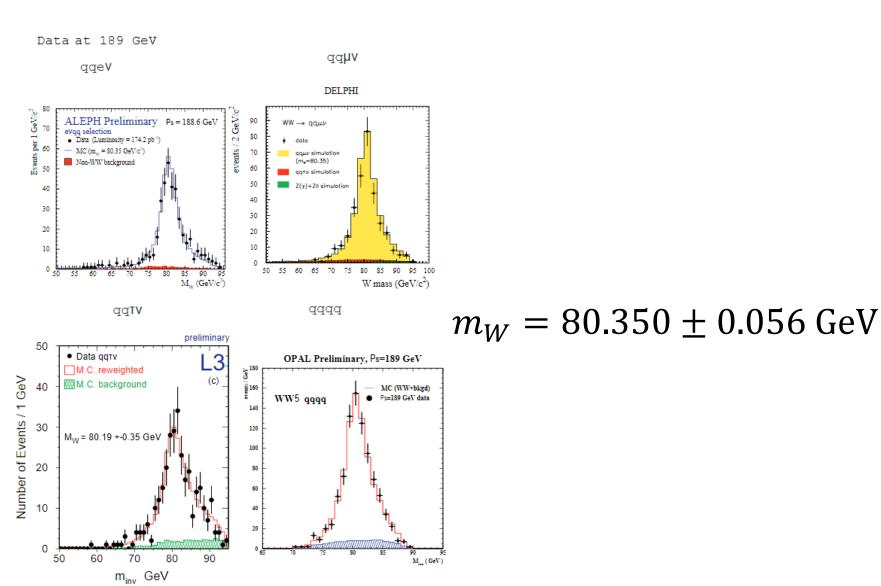
 $g_{\tau}/g_e = 1.010 \pm 0.022$
 $g_{\tau}/g_{\mu} = 1.008 \pm 0.021$

W^+W^- Cross Section

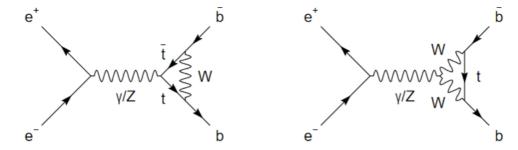


W^{\pm} Mass

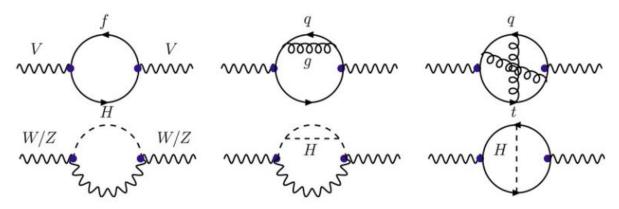
• The W^{\pm} mass can be determined from the cross section near threshold: m_W from σ_{WW} at 161 GeV


$$m_W = 80.40^{+0.22}_{-0.21} \text{ GeV}$$

W^{\pm} Mass


- The W mass can also be measured by direct reconstruction:
 - Purely leptonic decays have poor mass resolution because there are two neutrinos in the final state
 - Semi-leptonic decays are ideal since the jets are uniquely associated with one W decay
 - Hadronic decays provide additional statistics, but are complicated by assigning the jets to each W decay.

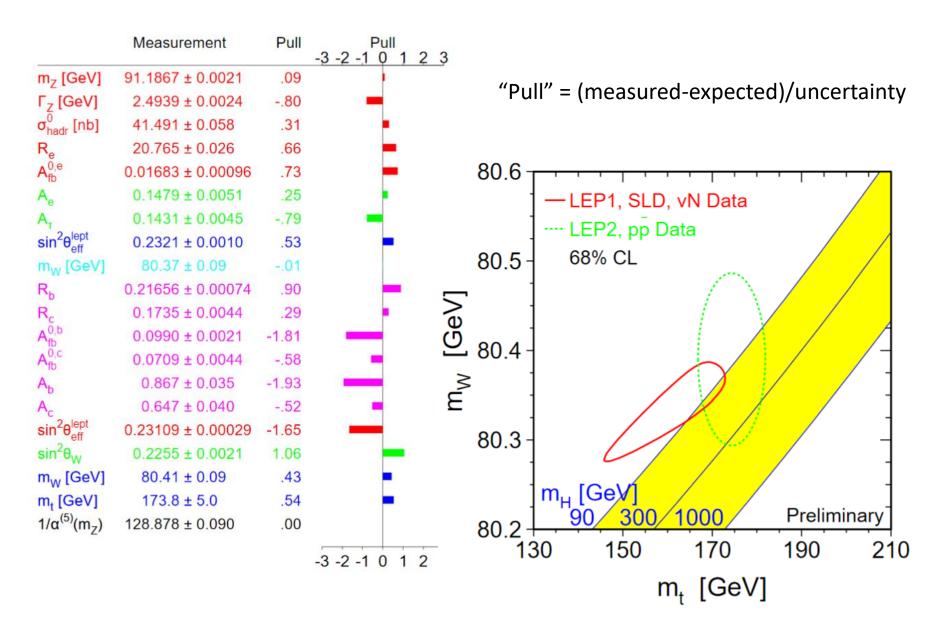
W^{\pm} Mass from Direct Reconstruction



Precision Electroweak Fits

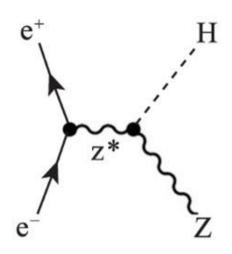
- Many parameters in the standard model are correlated via virtual loop effects
 - The top quark mass influences R_b

– The Higgs mass can influence M_Z and M_W

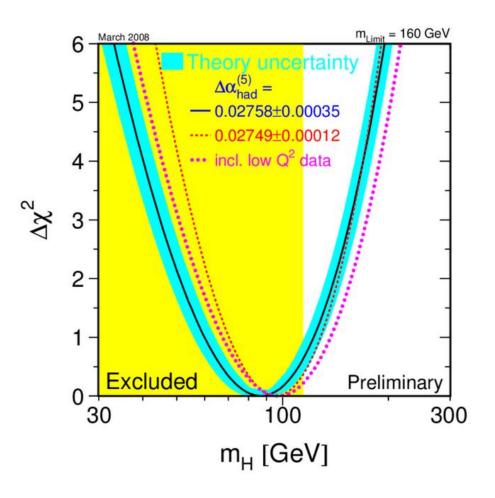


Precision Electroweak Fits

Parameter	Result	$1/\alpha_{em}$	α_S	$M_{ m Z}$	$M_{ m t}$	$M_{ m H}$
$1/\alpha_{em}^{(5)}(M_{ m Z}^2)$	$128.878\pm^{0.096}_{0.104}$	1.000	0.039	0.018	0.216	0.769
$\alpha_S(M_{ m Z}^2)$	$0.1194 {\pm} 0.0029$	0.039	1.000	-0.042	0.036	0.125
$M_{ m Z}$	91.1865 ± 0.0021	0.018	-0.042	1.000	-0.009	0.046
$M_{ m t}$	171.1 ± 4.9	0.218	0.036	-0.009	1.000	0.611
$\log_{10}(M_{ m H}/{ m GeV})$	$1.88\pm^{0.33}_{0.41}$	0.769	0.125	0.046	0.611	1.000
$M_{ m H}~{ m [GeV]}$	$76\pm^{85}_{47}$					


 Electroweak fits were consistent with a relatively light Higgs mass

Precision Electroweak Fits



Direct Search for Higgs

- The Higgs boson couplings to fermions are proportional to their mass
- Coupling directly to e^+e^- is disfavored because of the small electron mass
- At e^+e^- colliders, the main production mechanism is via "Higgsstrahlung":

Direct Searches for H^0 at LEP

- Full electroweak fit: $m_H = 114^{+69}_{-45} \text{ GeV}$
- Direct searches: $m_H > 114.4~{\rm GeV}$ (95% C.L.)

What Good is the Higgs Anyway?

- We think that a physical description of Nature should have a finite number of fundamental constants.
- Renormalizable field theories can absorb divergences into their fundamental couplings, masses, and other parameters
- 't Hooft and Veltman showed that all non-abelian gauge theories with massless bosons were renormalizable
 - QCD is an example of this type of field theory
- But the W and Z bosons are very heavy...
- How can we construct a renormalizable theory of weak interactions with massive vector bosons?