

Physics 56400 Introduction to Elementary Particle Physics I

Lecture 20 Fall 2019 Semester

Prof. Matthew Jones

Physics of Z Decays

$$\frac{d\sigma}{d\Omega} \left(e_L^- e_R^+ \to f_L \bar{f}_R \right) = \frac{N_c \alpha^2}{4s} (1 + \cos \theta)^2 \left| 1 + r c_L^e c_L^f \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(e_L^- e_R^+ \to f_R \bar{f}_L \right) = \frac{N_c \alpha^2}{4s} (1 - \cos \theta)^2 \left| 1 + r c_L^e c_R^f \right|^2$$

$$r = \frac{\sqrt{2} M_Z^2 G_F}{s - M_Z^2 + i \Gamma_Z M_Z} \left(\frac{s}{e^2} \right)$$

$$c_L = \frac{1}{2}(c_V + c_A)$$

$$c_R = \frac{1}{2}(c_V - c_A)$$

$$c_A = I_3$$

$$c_V = I_3 - 2Q_f \sin^2 \theta_W$$

Physics of Z Decays

- What properties of the Z can be measured?
 - Total cross section
 - Total width
 - Partial widths
 - Angular distributions (FB asymmetries)
- What other physics can be studied?
 - QCD
 - Heavy flavor physics
 - Physics of τ -decays
 - Searches for new physics

Z Cross Section

- Electrons and positrons are accelerated to $\sim 45~GeV$
- They collide so that $\sqrt{s} \approx 91 \text{ GeV}$ in the lab frame
- Luminosity:

$$\mathcal{L} = \frac{n_b f N_e - N_{e^+}}{4\pi \sigma_x \sigma_y}$$

$$n_b = 8$$

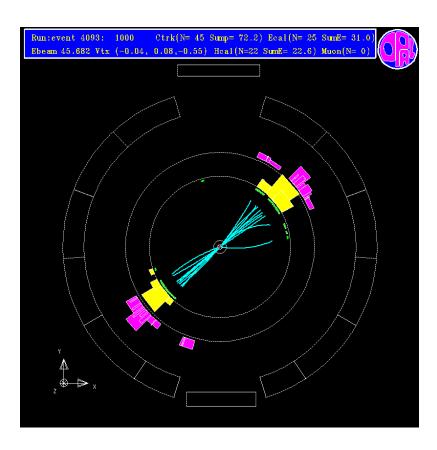
$$f = 11.2 \text{ kHz} \quad \Delta t = 11 \text{ µs}$$

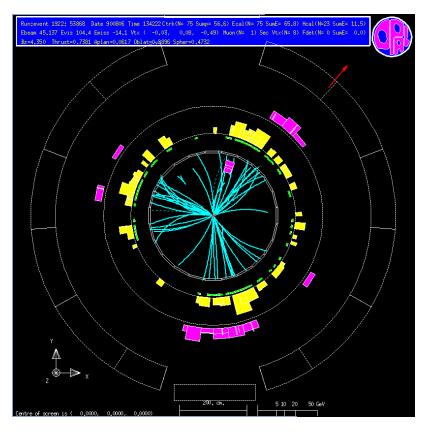
$$\sigma_x \sigma_y = (200 \times 5) \text{ µm}^2$$

$$N_{e^+} = N_{e^-} = 1.7 \times 10^{11}$$

$$\mathcal{L} = 2.1 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$

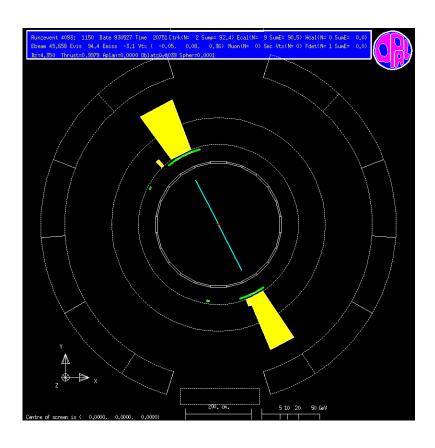
$$\sigma_{q\bar{q}} \approx 30 \text{ nb} = 30 \times 10^{-33} \text{ cm}^{-2}$$

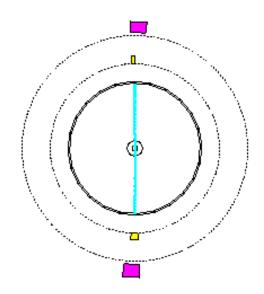

$$\mathcal{L} \times \sigma_{q\bar{q}} \approx 0.63 \text{ Hz}$$


Z Cross Section

- Most beam crossings do not produce any activity in the detector
- Efficient use of the available readout bandwidth requires a trigger
- Quickly determine whether an event contains interesting information before reading out all the detector elements
- Example:
 - Energy detected in the calorimeter
 - Hits detected in the muon chamber

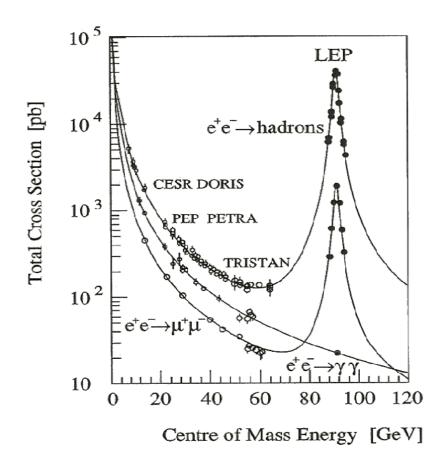
Z Hadronic Cross Section


Hadronic events are characterized by at least two jets



Z Leptonic Cross Section

Leptonic decays typically have only two tracks:



$$Z^0 \rightarrow e^+e^-$$

$$Z^0 \rightarrow \mu^+ \mu^-$$

Z Cross Section

• Count $Z^0 \to \text{hadrons}$ and $Z^0 \to \mu^+ \mu^-$ events at several different beam energies

Parameters in the fit:

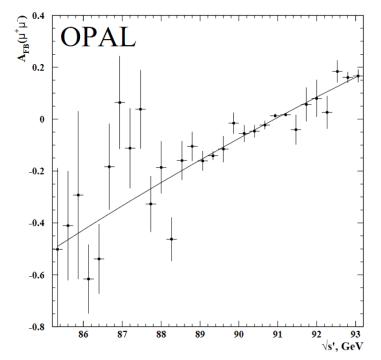
 M_Z - Z resonance mass Γ_Z - Z resonance width σ_h^0 - Peak hadronic cross section $R_h = \Gamma_h/\Gamma_\ell$ - Ratio of cross sections

Z Cross Section

- When the Z decays to neutrinos there is no activity in the detector and nothing to trigger on.
- How can we measure the invisible width of the Z?

$$\Gamma_{\text{inv}} = \Gamma_Z - \Gamma_{q\bar{q}} - \Gamma_{\ell^+\ell^-}$$
$$= \Gamma_Z - \Gamma_{\ell^+\ell^-} (1 + R_h)$$

Number of light neutrino families:

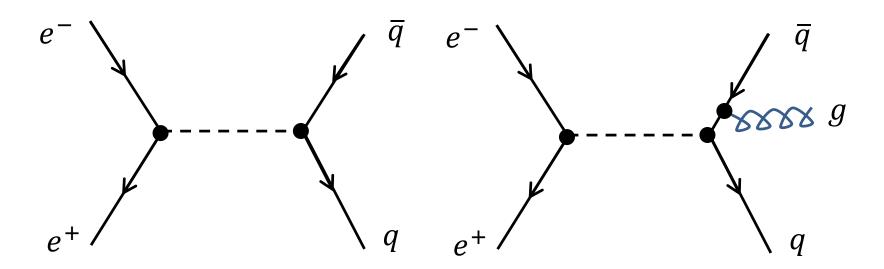

$$N_{\nu} = \left(\frac{\Gamma_{\text{inv}}}{\Gamma_{\ell^{+}\ell^{-}}}\right) \left(\frac{\Gamma_{\ell^{+}\ell^{-}}}{\Gamma_{\nu}}\right)_{SM}$$
$$= 2.9840 \pm 0.0082$$

 If there was a fourth family, then its neutrinos would have to be very different (ie, very massive, or weird couplings).

Forward-Backward Asymmetries

$$\frac{d\sigma}{d\Omega} \left(e^{-}e^{+} \to \mu^{-}\mu^{+} \right) = \frac{\alpha^{2}}{4s} (A_{0}(1 + \cos^{2}\theta) + A_{1}\cos\theta)$$

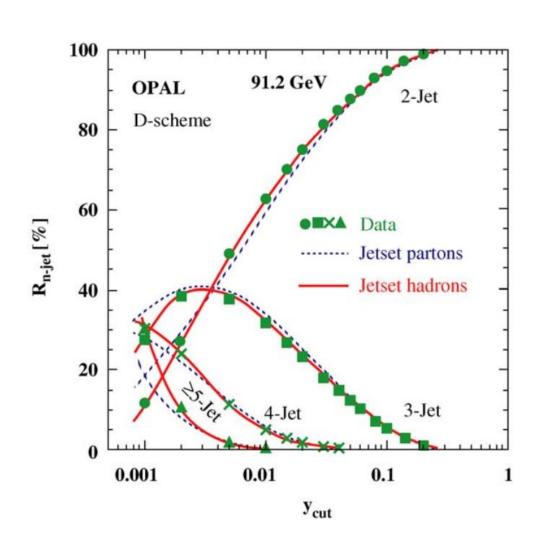
$$A_{FB} = \frac{3}{4} \frac{A_{1}}{A_{0}}$$


$$c_A = I_3$$

$$c_V = I_3 - 2Q_f \sin^2 \theta_W$$

$$|g_V| = 0.0413 \pm 0.0060,$$

 $|g_A| = 0.520 \pm 0.015.$


$$\sin^2 \theta_W^{\text{eff}} \equiv \frac{1}{4} \left(1 - \frac{g_V}{g_A} \right) = 0.2301 \pm 0.0029,$$

Quantum Chromodynamics

- This enhances the total hadronic cross section
- Jets are identified by clustering energy and momentum deposits in the detector
- Deposits are clustered when they are "close" in angle
- The limit at which two jets are merged into one is an adjustable parameter in the algorithm.

Quantum Chromodynamics

Jet resolution parameter: y_{cut}

Large value of y_{cut} gives only 2-jet events.

Small values of y_{cut} resolve many more jets.

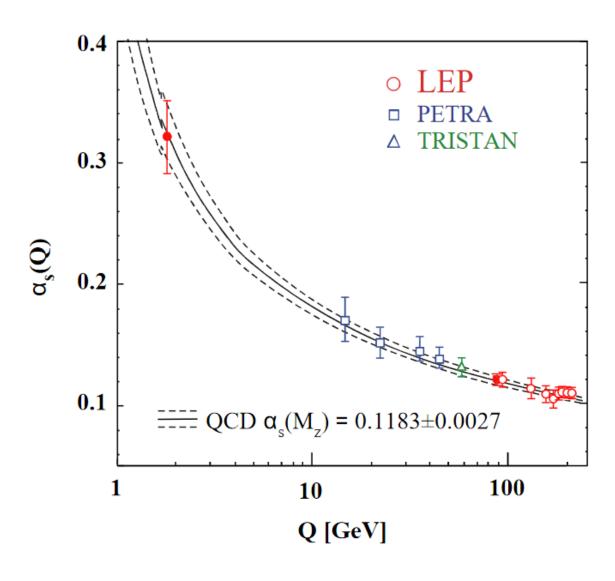
For values $y_{cut} \gtrsim 0.005$, the jets correspond to the underlying partons (primary quarks and gluons).

Very roughly, the ratio of 3-jet to 2-jet events should be proportional to α_s .

Quantum Chromodynamics

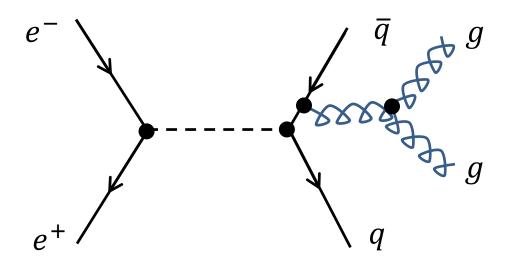
Hadronic cross section:

$$R_h = \frac{\Gamma_{had}}{\Gamma_{\ell}} = 20.767 \pm 0.025$$
$$= R_h^0 \left(1 + \frac{\alpha_s}{\pi} \right)$$


• Hadronic branching fraction in au decays

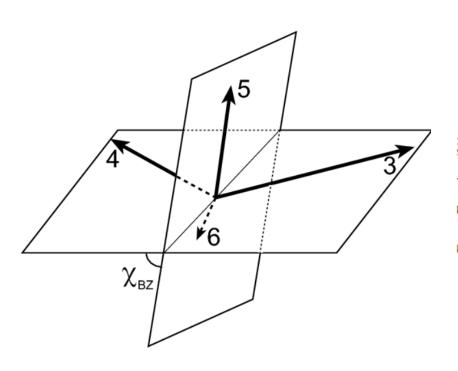
$$R_{\tau} = \frac{\Gamma(\tau \to \text{hadrons})}{\Gamma(\tau \to e^{-}\nu_{\tau}\bar{\nu}_{e})} = R_{\tau}^{0} \left(1 + \frac{\alpha_{s}}{\pi}\right)$$

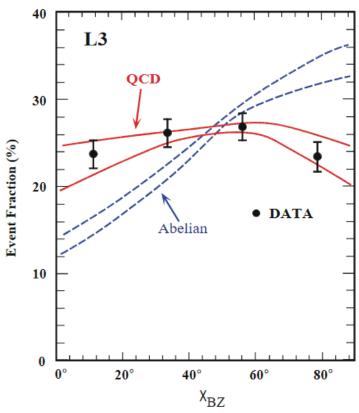
Ratio of jet rates:


$$\frac{R_3}{R_2} \propto \alpha_s$$

Strong Coupling Constant

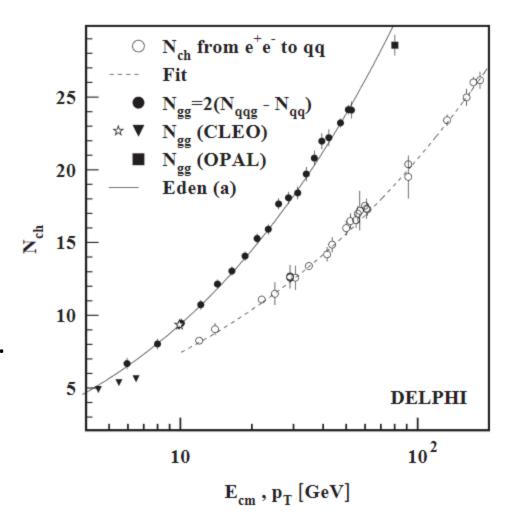
Other Tests of QCD

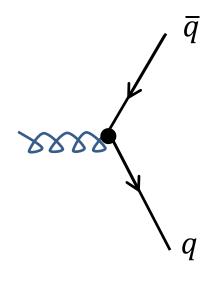

 One of the amplitudes that results in 4-jet events includes the 4-gluon vertex:



This amplitude is not present in an Abelian theory such as QED

Other Tests of QCD

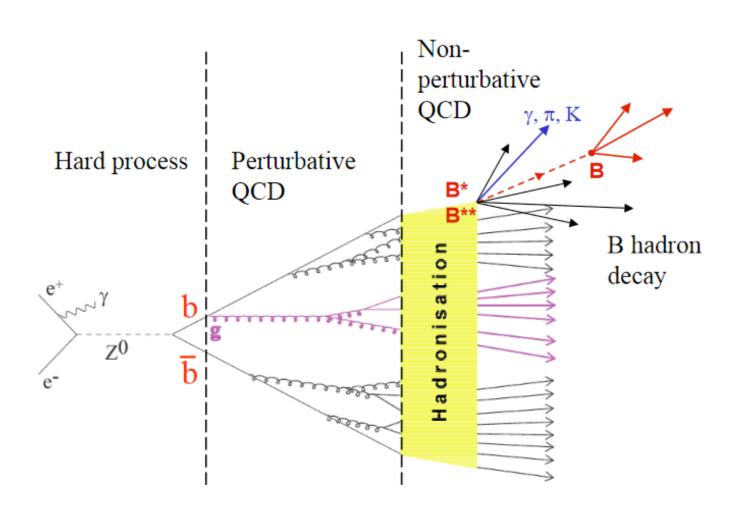

• Bengtson-Zerwas angle, χ_{BZ} : angle between the planes containing the two highest energy jets and the two lowest energy jets


Properties of Gluon Jets

- Two-jet events are entirely $q\bar{q}$
- Three-jet events have exactly one gluon jet
- Quark jets from heavy flavor quarks (b or c) can be identified by displaced secondary vertices – the remaining jet must be from a gluon.

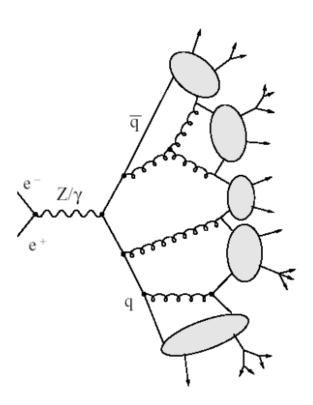
Gluon Splitting to $b\overline{b}$ and $c\overline{c}$

- Heavy flavor production in QCD events can sometimes present an important and significant background in other analyses
- Gluon jets can split into $q \bar{q}$ pairs

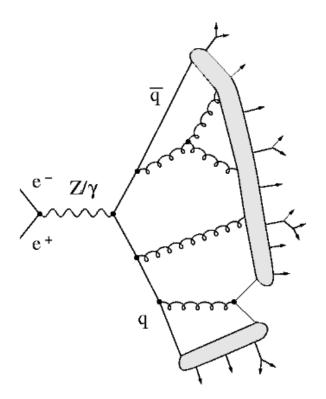

- Production of heavy flavor is suppressed by their large masses
- In 3-jet events, the quark jets are required to be from b-quarks
- The remaining jet must be a gluon.

$$g_{c\bar{c}} = (3.05 \pm 0.14 \text{ (exp.)} \pm 0.34 \text{ (sys.)})10^{-2}$$

 $g_{b\bar{b}} = (2.74 \pm 0.28 \text{ (exp.)} \pm 0.72 \text{ (sys.)})10^{-3}$,

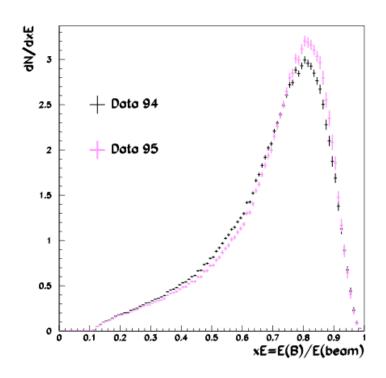

Models of Non-perturbative QCD

- When Q^2 is large, $\alpha_s(Q^2)$ is small and low-order perturbative QCD is reasonably accurate.
- Primary partons (quarks and gluons) radiate additional gluons and lose energy
- Eventually, Q^2 becomes small enough that perturbative QCD cannot be relied on to calculate the dynamics of parton fragmentation
- Instead, we rely on phenomenological models that are "inspired" by perturbative QCD.
- Eventually, the process is described by decays of strong resonances until all that is left are weakly decaying "stable" particles.


Fragmentation and Hadronization

Hadronization Models

"Cluster" fragmentation: $q\bar{q}$ form high-mass clusters that decay strongly to hadrons.

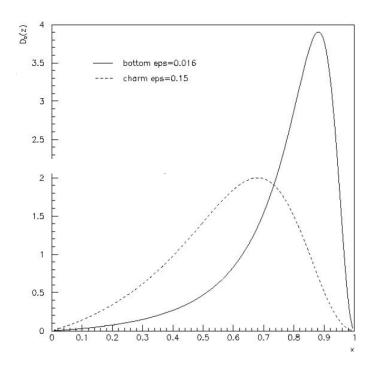


"String" fragmentation: Gluons connect all sources of color-charge and split into $q\bar{q}$ pairs.

Heavy Quark Fragmentation Functions

- Heavy quarks must eventually end up as a constituent of a weakly decaying heavy hadron.
- Heavy quarks radiate less and carry more momentum with them when they form hadrons.
- Fragmentation function $D_q(x)$, is the probability density for a quark with energy E_q to produce a hadron with energy $E_h = xE_q$
- This distribution can be measured in Z^0 decays because we know that $E_b = \sqrt{s}/2$

Heavy Quark Fragmentation


Kartvelishvili function:

$$D_q(x) = Nx^{\alpha}(1-x)$$

This shape has been parameterized by various formulas called "fragmentation functions":

Peterson Fragmentation:

$$D_q(x) = \frac{N}{x} \left(1 - \frac{1}{x} - \frac{\epsilon_Q}{1 - x} \right)^{-2}$$

Heavy Flavor Physics

- Low energy B factories produce $B^0 \bar{B}^0$ and $B^+ B^-$ via $e^+ e^- o \Upsilon(4S) o B \bar{B}$
- The cross section is relatively large but there is not enough available energy to produce B_s^0 or Λ_b
- In $Z^0 \to b\bar{b}$ decays, all types of b-hadrons are produced.
- The different types can be distinguished in semi-leptonic
 B-decays by fully reconstructing charm decays:

$$B^{+} \to \overline{D}^{0} \ell^{+} \nu_{\ell}$$

$$B^{0} \to D^{-} \ell^{+} \nu_{\ell}$$

$$B_{S}^{0} \to D_{S}^{-} \ell^{+} \nu_{\ell}$$

$$\Lambda_{b} \to \Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}$$

Heavy Flavor Physics

$$f(\bar{b} \to B^+) + f(\bar{b} \to B^0) + f(\bar{b} \to B_s^0) + f(b \to b \text{ baryon}) = 1$$

• Measurements in Z^0 decays:

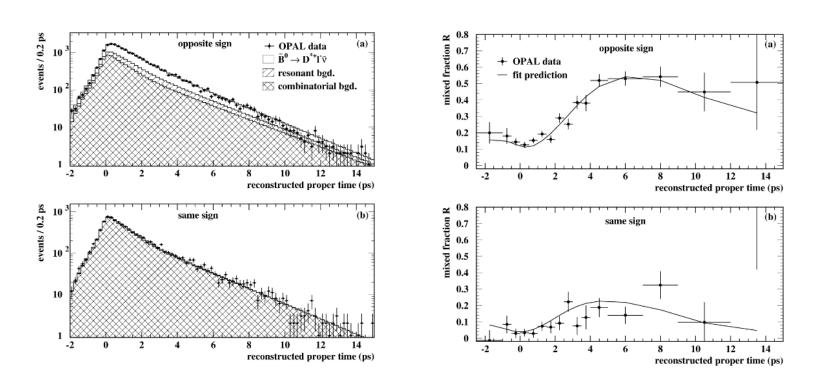
$$f(\overline{b} \to B^+) = f(\overline{b} \to B^0) = 0.407 \pm 0.007$$

 $f(\overline{b} \to B_s^0) = 0.101 \pm 0.008$
 $f(b \to b\text{-baryon}) = 0.085 \pm 0.011$
 $f(\overline{b} \to B_s^0) / f(\overline{b} \to B_d^0) = 0.249 \pm 0.023$

• Measurement in $p\bar{p}$ collisions seem to be different:

$$f(\overline{b} \to B^+) = f(\overline{b} \to B^0) = 0.343 \pm 0.021$$

 $f(\overline{b} \to B_s^0) = 0.115 \pm 0.013$
 $f(b \to b\text{-baryon}) = 0.199 \pm 0.047$
 $f(\overline{b} \to B_s^0) / f(\overline{b} \to B_d^0) = 0.334 \pm 0.041$


P-Wave B Mesons

- B mesons can be produced in orbital excitations with one unit of orbital angular momentum.
- These are sometimes referred to as B^{**} states.

$$B_1^+, B_2^{*+} \to B^0 \pi^+$$

 $B_1^0, B_2^{*0} \to B^+ \pi^-$

- This is important because \underline{B}^0 states are produced in association with π^+ while \overline{B}^0 states are produced in association with π^- .
- These pions generally have low momentum (soft) and $\Delta M = M(B\pi) M(B)$ is small.
- This can be used to tag the production flavor of B mesons with high efficiency.
- Other techniques require identifying the decay flavor of the opposite side B hadron.

B Oscillations in Z Decays

$$\tau_{\rm B^0} = 1.541 \pm 0.028 \pm 0.023 \text{ ps},$$

 $\Delta m_{\rm d} = 0.497 \pm 0.024 \pm 0.025 \text{ ps}^{-1},$