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Cross Sections

• Reaction rate:
𝑅 = ℒ ∙ 𝜎

• The cross section is proportional to the probability of 
observing a particular outcome in a collision

• Example:

– High energy protons might interact with a large cross 
section but only rarely do they produce a Higgs particle

– The rates of both processes are proportional to the 
luminosity



Cross Sections

• In quantum mechanics, one of the only questions we are 
allowed to ask is, 

“what is the probability of observing a system in a final 
state ۧ|𝑓 given that it started in an initial state ۧ|𝑖 ?”

• Quantum mechanics states that this probability is 
proportional to

𝑃 ~ 𝑓|𝑖 2

• If the initial and final states describe “free particles”, then
𝑃 ~ 𝑓 𝑈 𝑖 2

where the operator 𝑈 evolves the initial state, from time 
𝑡 → −∞ to the asymptotic time 𝑡 → +∞.



Cross Sections

• We will see that cross sections work like probabilities:
𝜎 ~ 𝑓 𝑈 𝑖 2

• The time evolution operator is expressed in terms of the 
Hamiltonian, 𝐻.

• We are not allowed to ask how the initial state turns into 
the final state, we can only calculate the probability.

• In practice, we need to account for all possible 
intermediate states, and add their amplitudes (complex 
numbers).

• The Standard Model of particle physics tells us what the 
possible intermediate states could be and how the initial 
and final states couple to them.



Cross Sections

• The cross section could be a function of several 
independent variables

– For example, the beam energy:



Cross Sections
The deuteron is a bound state of a proton and a neutron.

It is a stable isotope of hydrogen (heavy hydrogen).



Differential Cross Sections

• There are lots of ways to describe the final state

• The total proton-proton cross section accounts for all 
possible interactions

• The elastic cross section describes the process where 
the protons retain their identity but just “bounce” off 
of each other

• We detect these by observing protons scattered at 
some angle with respect to the initial beam direction

• What can we learn by measuring the angular 
distribution of scattered protons?



Geometry
• We will use spherical coordinates to describe the scattering 

geometry:

• The angle 𝜃 is measured with respect to the z-axis

• The angle 𝜑 is measured with respect to the x-axis in the x-y 
plane.

(This is just the usual system of polar coordinates)

• In systems with azimuthal symmetry, we don’t expect there to 
be any dependence on 𝜑.
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Geometry

• The differential element of solid angle is
𝑑Ω = 𝑑(cos 𝜃)𝑑𝜑 = sin 𝜃 𝑑𝜃𝑑𝜑

• This solid angle has the area 𝑑𝐴 on the surface of a 
sphere of radius 𝑅:

𝑑𝐴 = 𝑅2𝑑Ω

• The total surface area of the sphere is

𝐴 = 𝑅2න
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𝑑(cos 𝜃)
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Differential Cross Sections

• We want to measure the rate at which protons 
are scattered with polar angles (𝜃, 𝜑) into a small 
interval of solid angle:

𝑑𝑅 = ℒ
𝑑𝜎

𝑑Ω
𝑑Ω

• The function 𝑑𝜎/𝑑Ω is the differential cross 
section.
– In this case it is a function of the polar angles

• Let’s calculate 𝑑𝜎/𝑑Ω for a couple different 
models…



Brick Wall Scattering

• Suppose the target particles were flat disks:

• Assuming they were all oriented the same way, the 
target would just reflect the beam particles

• All scattering angles would be the same

• The differential cross section would be a delta-
function at that specific scattering angle

(not very interesting or realistic)



Hard Sphere Scattering

• Given that we are probably scattering from 
nuclei, perhaps they could be described as 
hard spheres…

“Impact parameter”, 𝑏 sin 𝛼 = 𝑏/𝑅



Hard Sphere Scattering

• The scattering angle is 𝜃 = 𝜋 − 2𝛼
cos 𝜃 = cos 𝜋 − 2𝛼

= −cos 2𝛼
= sin2 𝛼 − cos2 𝛼
= 2 sin2 𝛼 − 1

=
2𝑏2

𝑅2
− 1

• Does this make sense?
– As 𝑏 → 𝑅, cos 𝜃 → 1

– As 𝑏 → 0, cos 𝜃 → −1



Hard Sphere Scattering

• The area of the hard sphere that will result in 
scattering angles larger than 𝜃 will be

𝐴 = 𝜋𝑏2

=
𝜋

2
𝑅2 1 + cos 𝜃

• The differential scattering cross section is
𝑑𝜎

𝑑Ω
=

𝑑𝜎

𝑑 cos 𝜃 𝑑𝜑
=
𝑅2

4
– This is isotropic

• Total cross section is 𝜎 = 𝜋𝑅2



Coulomb Scattering
• Assume that the beam has charge 𝑧𝑒 and the target 

nuclei has charge 𝑍𝑒

• The beam particle will follow a hyperbolic trajectory:

• Classical mechanics:

𝑏 =
𝑧𝑍𝑒2

𝑚𝑣0
cot ൗ𝜃 2

But we don’t know 𝑏 on an event-by-event basis…  



Coulomb Scattering

• Assume that the beam has intensity 𝐼.

• 𝐼 is the number of incident beam particles per unit 
area per unit time.

• Total number of beam particles:

𝑁 = න
0

𝑇

𝑑𝑡න
0

∞

2𝜋 𝑏 𝑑𝑏 𝐼(𝑏, 𝑡)

• We typically assume that the intensity is 
independent of time

• By definition,

𝑑𝜎 =
𝑑𝑁(𝜃, 𝜑)

𝑇 ∙ 𝐼0
= 𝑏 𝑑𝑏 𝑑𝜑



Coulomb Scattering

• Differential cross section:
𝑑𝜎

𝑑Ω
=

𝑏 𝑑𝑏 𝑑𝜑

𝑑 cos 𝜃 𝑑𝜑
=

𝑏
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𝑑𝑏
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• But,
𝑑𝑏

𝑑𝜃
=

𝑑

𝑑𝜃

𝑧𝑍𝑒2

𝑚𝑣0
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=
𝑧𝑍𝑒2
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csc2 ൗ𝜃 2



Coulomb Scattering

• Eventually, it turns out that

𝑑𝜎

𝑑Ω
=
1

4

𝑧𝑍𝑒2

𝑚𝑣0

2
1

sin4 ൗ𝜃 2
• This is the cross section for scattering from a single target 

nucleus
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Differential Cross Sections

• By studying the dependence of the differential cross 
section on various independent variables we can 
learn about the fundamental interactions on the 
microscopic scale.

• Exclusive cross section:

– Final state is specified precisely (eg, exactly one proton in 
the case of elastic scattering)

• Inclusive cross section:

– Final state includes the specified particle configuration

– This is usually the sum of all possible exclusive cross 
sections that include the specified particle configuration



Decay Rates

• What else can we measure?
– Lifetimes of unstable particles

– Branching fractions to different final states

• Lifetime, decay rate and “partial width”:

Γ =
ℏ

𝜏
• Branching fraction:

𝐵𝑟 𝑖 → 𝑓 =
Γ𝑓

Γ𝑡𝑜𝑡𝑎𝑙

Γ𝑡𝑜𝑡𝑎𝑙 =

𝑗

Γ𝑗

Γ𝑗 ~ 𝑗 𝑈|𝑖 2



Decay Rates

• Especially for nuclear transitions, we use the half-life 
rather than the decay rate.

𝑁 𝑡 = 𝑁0𝑒
−𝑡/𝜏 = 𝑁02

−𝑡/𝑡1/2

• Exercise: work out the relation between 𝑡1/2 and 𝜏

• The half-life of many radioactive elements is often 
expressed in years or days

𝑡 Τ1 2
22Na = 2.602 years

𝑡 Τ1 2
7Be = 53.22 days

• Decay rates are often expressed in Becquerel (decays 
per second) or in Curies.

1 μCi = 37,000 Bq


