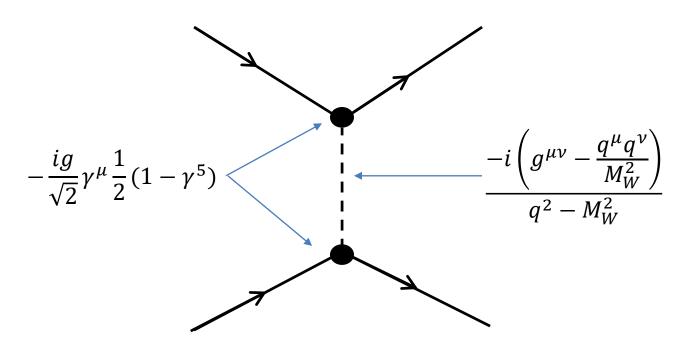


# Physics 56400 Introduction to Elementary Particle Physics I

Lecture 19 Fall 2019 Semester

Prof. Matthew Jones


### Summary of Tuesday's Lecture

- Weak interactions couple to fermion states with left-handed chirality
- This is a purely empirical observation, but consistent with all measurements
- Left-handed charged currents follow the form

$$J_e^{\mu} = \overline{u}_e \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) v_{\nu_e}$$

- The Fermi 4-point interaction parameterized all the dynamics as a universal weak coupling with strength  $G_F$
- Some cross sections calculated using the 4-point interaction violated unitarity at high energies
- This deficiency was mitigated by introducing a massive, charged, vector boson.

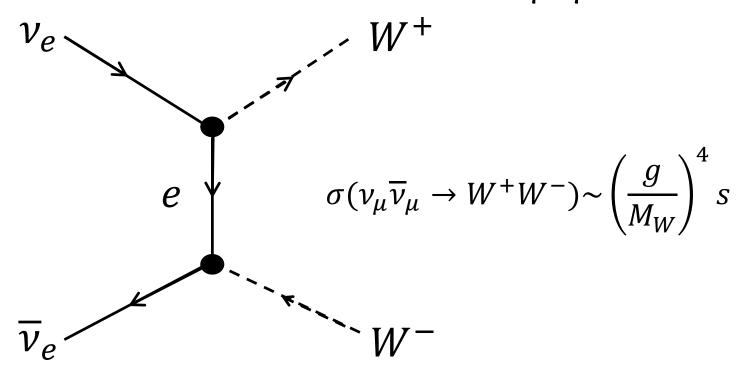
## **Charged Weak Current**



$$\frac{-i\left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{M_W^2}\right)}{q^2 - M_W^2} \approx \frac{ig^{\mu\nu}}{M_W^2}$$

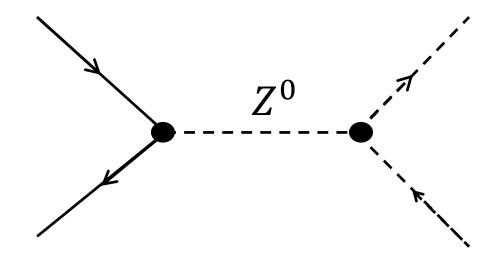
$$G_F = \frac{\sqrt{2}g^2}{8\,M_W^2}$$

### **Family Structure of Matter**


$$\begin{pmatrix} u \\ d \end{pmatrix} \qquad \begin{pmatrix} c \\ s \end{pmatrix} \qquad \begin{pmatrix} t \\ b \end{pmatrix}$$

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \qquad \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \qquad \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix}$$

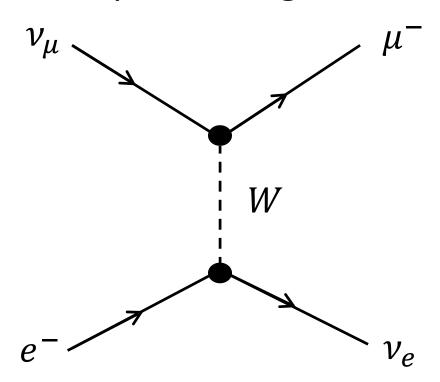
- These are grouped into "weak isospin doublets".
- The charged weak interaction couples within each doublet.
- This is like the idea of strong isospin (the strong interaction doesn't distinguish based on electric charge)


### **Charged Weak Current**

- Introducing the W boson avoided unitarity violation in  $\nu_e \overline{\nu}_e \rightarrow \mu^+ \mu^-$
- But it persists in the process  $\nu_{\mu} \overline{\nu}_{\mu} \rightarrow W^+ W^-$

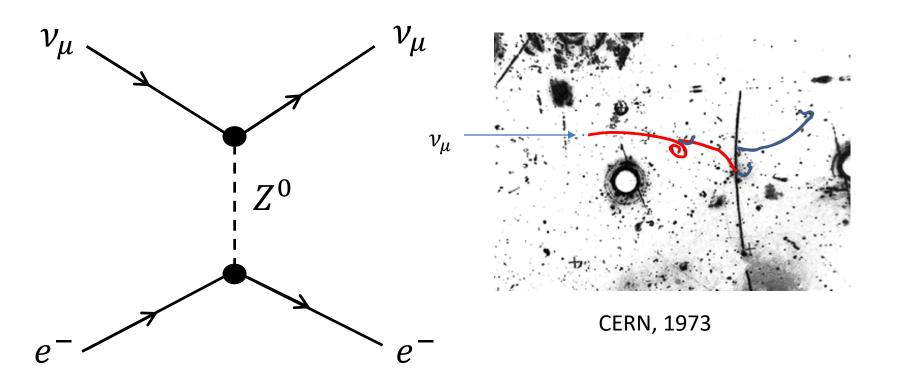


#### **Weak Neutral Currents**

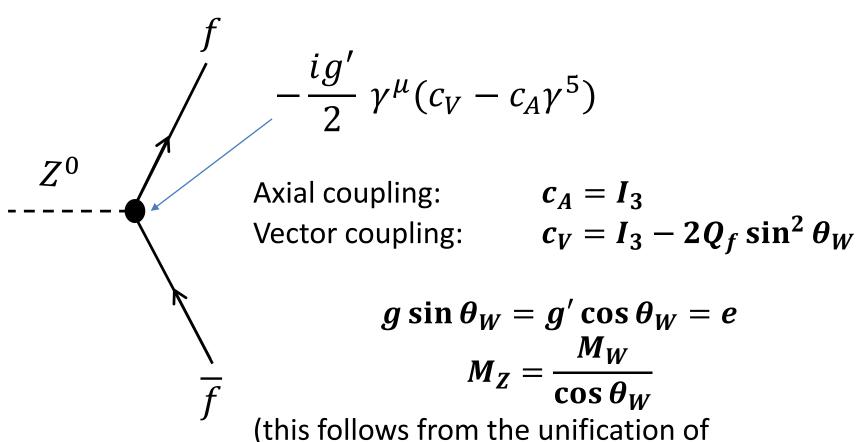

 To fix the problem with unitarity, another vector boson was introduced that would cancel the bad behavior in the amplitude:



 Its mass would be about the same as the W and its couplings to fermions and W's would be highly constrained.


#### **Evidence for Weak Neutral Currents**

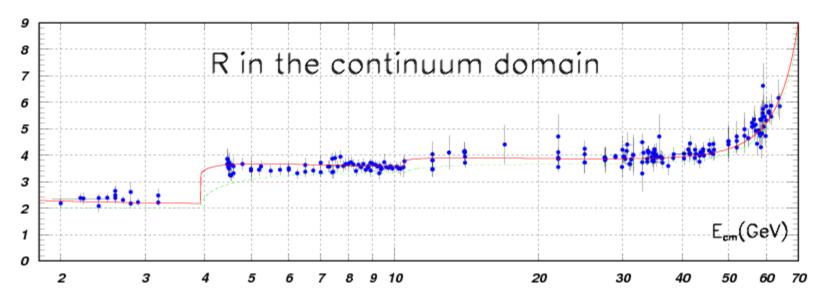
 If the weak interaction only involved charged currents, then neutrino scattering would have to change the lepton charge:




#### **Evidence for Weak Neutral Currents**

 But, weak neutral currents would allow elastic neutrino-electron scattering:




#### **Weak Neutral Currents**



(this follows from the unification of electromagnetic and weak interactions via the Higgs mechanism.)

#### **Evidence for the Z Boson**

- Elastic neutrino scattering
- "R" ratio at  $e^+e^-$  colliders:



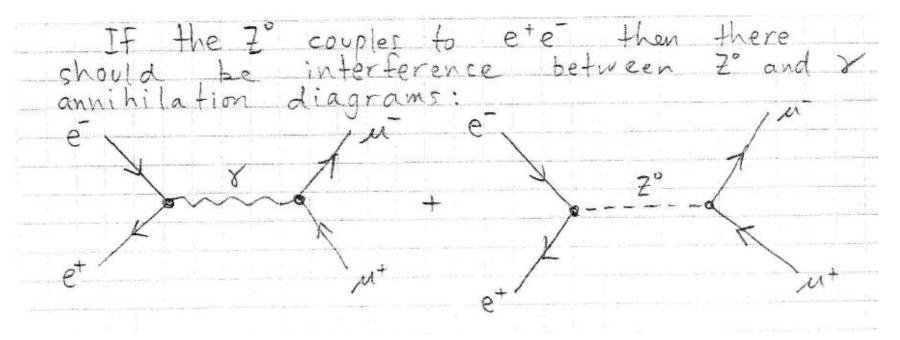
• Forward-backward asymmetries in  $e^+e^-$  collisions

### Forward-Backward Asymmetries

Pure quantum electrodynamics:

$$\frac{d\sigma}{d\Omega} = n_c Q_f^2 \frac{\alpha^2}{4s} (1 + \cos^2 \theta)$$

Forward/backward cross-section:


$$\sigma_F = 2\pi \int_0^1 \frac{d\sigma}{d\Omega} d(\cos\theta) = n_c Q_f^2 \frac{2\pi\alpha^2}{3s}$$

$$\sigma_B = 2\pi \int_{-1}^0 \frac{d\sigma}{d\Omega} d(\cos\theta) = n_c Q_f^2 \frac{2\pi\alpha^2}{3s}$$

Forward-backward asymmetry:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = 0$$
 (in pure QED)

## Forward-Backward Asymmetries



$$\mathcal{M} = \mathcal{M}_{\gamma} + \mathcal{M}_{Z}$$
$$|\mathcal{M}|^{2} = |\mathcal{M}_{\gamma}|^{2} + |\mathcal{M}_{Z}|^{2} + 2\operatorname{Re}(\mathcal{M}_{\gamma}^{*}\mathcal{M}_{Z})$$

 The chiral decomposition of the Z coupling can be written in terms of separate coupling constants for right- and lefthanded chiral fermions:

$$-\frac{ig}{\cos\theta_W} \gamma^{\mu} \frac{1}{2} (c_V + c_A \gamma^5) = -\frac{ig}{\cos\theta_W} \gamma^{\mu} \left( c_L \frac{1}{2} (1 - \gamma^5) + c_R \frac{1}{2} (1 + \gamma^5) \right)$$

$$c_L = \frac{1}{2} (c_V + c_A)$$

$$c_R = \frac{1}{2} (c_V - c_A)$$

• This is the same vertex factor as in QED when we set  $c_A=0$  in which case the photon couples equally to left- and right-handed fermions.

• Consider  $e^+e^- \rightarrow \mu^+\mu^-$  in which both the  $e^-$  and  $\mu^-$  have left-handed chirality:

$$-i\mathcal{M} = \left(\frac{ie^{2}}{q^{2}} + \frac{ig^{2}}{4\cos^{2}\theta_{W}} \frac{c_{L}^{e}c_{L}^{\mu}}{q^{2} - M_{Z}^{2}}\right) \times \bar{v}_{L}(p_{2})\gamma^{\mu}u_{R}(p_{1})\bar{u}_{L}(k_{1})\gamma_{\mu}v_{R}(k_{2})$$

$$= \frac{ie^{2}}{s} (1 + rc_{L}^{e}c_{L}^{\mu})\bar{v}_{L}(p_{2})\gamma^{\mu}u_{R}(p_{1})\bar{u}_{L}(k_{1})\gamma_{\mu}v_{R}(k_{2})$$

$$r = \frac{g^{2}}{4\cos^{2}\theta_{W}} \cdot \frac{1}{s - M_{Z}^{2}} \cdot \frac{s}{e^{2}} = \frac{\sqrt{2}M_{Z}^{2}G_{F}}{s - M_{Z}^{2}} \left(\frac{s}{e^{2}}\right)$$

Taking into account the finite width of the Z resonance,

$$r = \frac{\sqrt{2}M_Z^2 G_F}{S - M_Z^2 + i\Gamma_Z M_Z} \left(\frac{S}{e^2}\right)$$

Differential cross section:

$$|\mathcal{M}_{LL}|^2 = \frac{e^4}{s^2} |1 + rc_L^e c_L^{\mu}|^2 (1 + \cos \theta)^2$$

Likewise,

$$|\mathcal{M}_{RR}|^2 = \frac{e^4}{s^2} |1 + rc_R^e c_R^{\mu}|^2 (1 + \cos \theta)^2$$

• But,

$$|\mathcal{M}_{LR}|^2 = \frac{e^4}{s^2} |1 + rc_L^e c_R^{\mu}|^2 (1 - \cos \theta)^2$$
$$|\mathcal{M}_{RL}|^2 = \frac{e^4}{s^2} |1 + rc_R^e c_L^{\mu}|^2 (1 - \cos \theta)^2$$

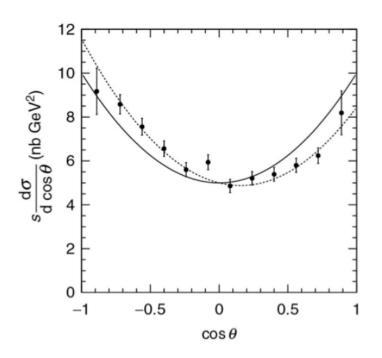
Differential cross sections:

$$\frac{d\sigma}{d\Omega}(e_L^- e_R^+ \to \mu_L^- \mu_R^+) = \frac{\alpha^2}{4s} (1 + \cos\theta)^2 |1 + rc_L^e c_L^\mu|^2$$

$$\frac{d\sigma}{d\Omega}(e_L^- e_R^+ \to \mu_R^- \mu_L^+) = \frac{\alpha^2}{4s} (1 - \cos\theta)^2 |1 + rc_L^e c_R^\mu|^2$$
(and likewise for RL and RR...)

... Average over incident helicity, sum over final state helicity:

$$\frac{d\sigma}{d\Omega}\left(e^{-}e^{+} \to \mu^{-}\mu^{+}\right) = \frac{\alpha^{2}}{4s}\left(A_{0}\left(1 + \cos^{2}\theta\right) + A_{1}\cos\theta\right)$$


Forward-backward asymmetry:

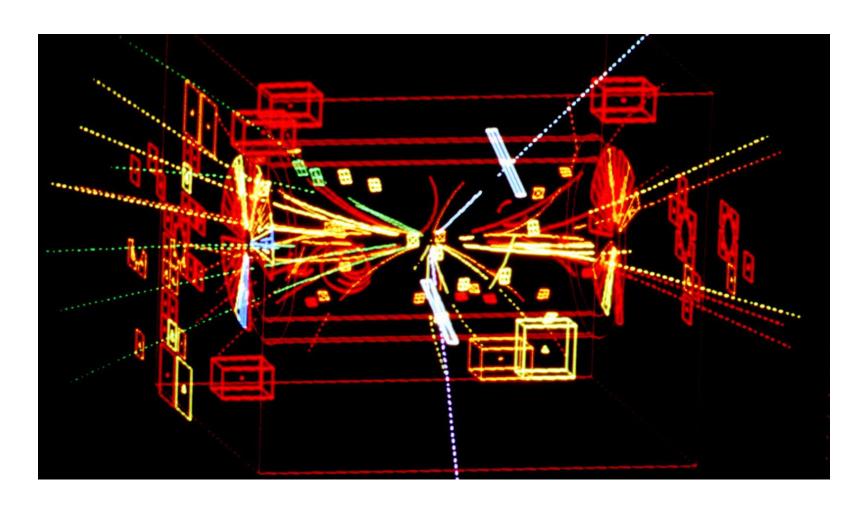
$$A_{FB} = \frac{3}{4} \frac{A_1}{A_0}$$

• Remember that this depends on r which is a function of s.

#### Forward-Backward Asymmetry

• The influence of the  $Z^0$  was apparent even at energies much less than  $M_Z$ :




Results from the JADE experiment  $\sqrt{s} = 34.4 \text{ GeV}$ 

Analysis of the interference effects suggested that  $M_Z \approx 90$  GeV.

#### **Direct Production of W and Z**

- In the early 1980's,  $e^+e^-$  colliders did not have sufficient energy to produce Z's directly.
- $e^+e^-$  can only produce  $W^+W^-$  in pairs, so they certainly didn't have enough energy to produce them.
- It was proposed to turn the CERN SPS into a protonanti-proton collider
  - Doubles center-of-mass energy for  $u\bar{u}$ ,  $d\bar{d} \rightarrow Z^0$
  - Can produce single W's via  $u\bar{d} \to W^+$  and  $\bar{u}d \to W^-$
  - Technical challenges associated with colliding anti-protons

#### Observation of W and Z



UA1 experiment at the  $Sp\overline{p}S$ June 1, 1983

## **Construction of LEP (and SLC)**

- Precision studies of the electroweak sector of the standard model motivated building high-energy  $e^+e^-$  colliders
- SLAC Linear Collider (SLC):
  - $-\sqrt{s} = 91 \text{ GeV}$  collisions (just sufficient to produce Z)
  - Highly polarized electron beam
- Large Electron Positron (LEP) Collider:
  - LEP1 :  $\sqrt{s}$  ≈ 91 GeV
  - $\text{ LEP1.5: } \sqrt{s} = 130/136 \text{ GeV}$
  - LEP2:  $\sqrt{s} = 161, 172, 183, 189 \text{ GeV}$  (above  $W^+W^-$  threshold)