

Physics 56400 Introduction to Elementary Particle Physics I

Lecture 11 Fall 2019 Semester

Prof. Matthew Jones

Hadronic Isospin Multiplets

• Nucleons: $\binom{p}{n}$

• Pions:
$$\begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix}$$

• Delta resonances:
$$\begin{pmatrix} \Delta^{++} \\ \Delta^{+} \\ \Delta^{0} \\ \Delta^{-} \end{pmatrix}$$

Baryon Antiparticles

- Baryons have baryon number B=+1
- Anti-baryons will have baryon number B=-1
- Baryon number is conserved in strong interactions
- Production of anti-protons must proceed as follow:

$$p + p \rightarrow p + p + p + \bar{p}$$
or
 $p + n \rightarrow p + n + p + \bar{p}$

 What is the minimum beam energy needed to make anti-protons in a fixed target experiment?

Baryon Antiparticles

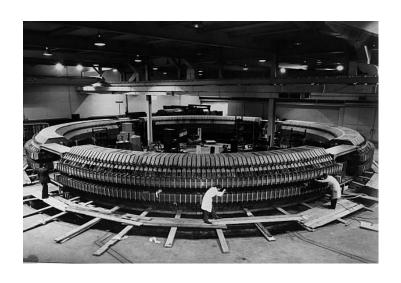
Beam proton:
$$m$$
 $p_b = (E_b, \vec{p}_b)$ Target proton: $p_t = (m_p, \vec{0})$ Final state: $p_f = (4E_p, 4\vec{p}_p)$
$$|\vec{p}_p| = \frac{|\vec{p}_b|}{4} = \frac{\sqrt{E_b^2 - m_p^2}}{4}$$

$$E_p = \frac{E_b + m_p}{4} = \sqrt{|\vec{p}_p|^2 + m_p^2} = \sqrt{\frac{E_b^2 - m_p^2}{16} + m_p^2}$$

$$\frac{E_b^2 + 2E_b m_p + m_p^2}{16} = \frac{E_b^2 + 15m_p^2}{16}$$

$$E_b = 7m_p = 6.57 \text{ GeV}$$
 $T_b = 6m_p = 5.63 \text{ GeV}$ (kinetic energy of beam proton)

Anti-protons



Brookhaven Cosmotron (1953) E = 3 GeV

Berkeley Bevatron (1954) $E=6~{\rm GeV}$ Anti-proton discovered in 1955 by Chamberlain and Segré. Nobel prize in 1959.

Baryon Anti-particles

- Using the Dirac sea idea, an anti-proton is equivalent to the absence of a negative-energy proton.
- If a negative energy proton has isospin $I_3 = +1/2$ then its absence looks like $I_3 = -1/2$.

• Anti-protons:
$$\binom{\bar{n}}{\bar{p}} = \binom{1/2}{-1/2}$$

• Anti-deltas:
$$\begin{pmatrix} \Delta^+ \\ \bar{\Delta}^0 \\ \bar{\Delta}^- \end{pmatrix} = \begin{pmatrix} 3/2 \\ 1/2 \\ -1/2 \\ -3/2 \end{pmatrix}$$

- Anti-baryons also have odd-parity.
- Pions:
 - $-\pi^+$ and π^- are anti-particles,
 - $-\pi^0$ is its own anti-particle.

Vector Mesons

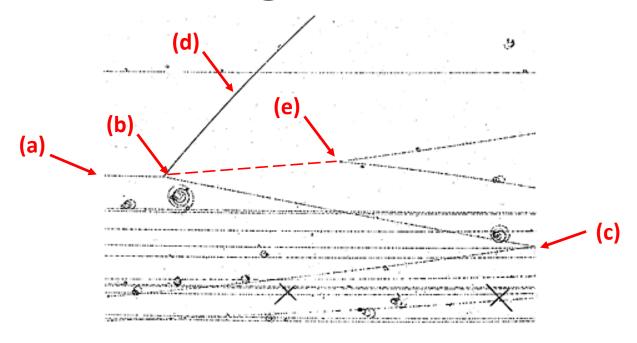
- e^+e^- collisions can produce states of spin-1:
- The $\rho(770)$ multiplet contains three charge states:

$$\begin{pmatrix} \rho^+ \\ \rho^0 \\ \rho^- \end{pmatrix}$$

- They form an isospin triplet (I=1).
- They have odd parity.
- They decay to pairs of pions:

$$\rho^+ \to \pi^+ \pi^0$$
$$\rho^0 \to \pi^+ \pi^-$$

Strange Mesons



- a) Incident proton
- b) Interaction with target nucleus
- c) Outgoing proton
- d) Outgoing charged particle
- e) Decay of a long-lived neutral particle, $V^0 \rightarrow \pi^+\pi^-$

Strange Mesons

- First observed in high-altitude cloud chamber experiments
- Strange mesons were easily produced in strong interactions, but only in pairs.
- Strange mesons had long lifetimes so they must decay weakly even though there were no leptons in the final state.
- Proposal:
 - These particles carry a new quantum number (strangeness)
 - Strangeness is conserved in strong interactions
 - Strange particles are produced in particle/anti-particle pairs to conserve strangeness
 - Strange particles cannot decay strongly
 - The lightest positively charged strange meson assigned S=+1

Strange Hadrons

Types of strange particles:

- Neutral mesons:
$$V^0 \rightarrow \pi^+\pi^-$$

- Charged mesons:
$$\tau^+ \to \pi^+ \pi^- \pi^+$$
 Parity -1

$$\theta^+ \rightarrow \pi^+ \pi^0$$
 Parity +1

- Neutral baryons:
$$\Lambda \rightarrow p\pi^-$$

- The τ - θ puzzle:
 - The τ^+ and θ^+ had exactly the same charge, mass, lifetime (they seemed to be the same particle)
 - They decayed to final states with different parity (they seemed to have opposite quantum numbers)
 - Parity must not necessarily be conserved in weak decays
- Both are now know as the charged kaon, K^+

Strange Hadrons

- Charged kaons: K^+ and K^- , $m_{K^+} = 493.7 \text{ MeV}$
- Neutral kaons: K^0 and \overline{K}^0 , $m_{K^0}=497.6~{
 m MeV}$
- These seemed to form two isospin doublets:

$$\binom{K^+}{K^0} \qquad \qquad \binom{\overline{K}^0}{K^-}$$

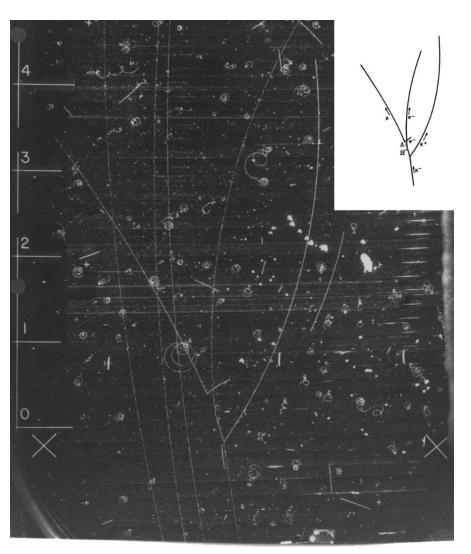
- The neutral Λ is an isospin singlet, $m_{\Lambda} = 1116~{\rm MeV}$
- A triplet of strange baryons was observed:

$$\Sigma^+, \Sigma^0, \Sigma^-$$
 with similar mass, $m_{\Sigma} \sim 1193~{\rm MeV}$

- Decays:
 - $-\Sigma^+\to p\pi^0, n\pi^+ \text{ with lifetime 80 ns} \\ -\Sigma^-\to n\pi^- \text{ with lifetime 148 ns} \\ -Not particle/anti-particle!}$

 - $-\Sigma^0 \rightarrow \Lambda \gamma$ with lifetime 10⁻¹⁹ seconds (electromagnetic decay conserves strangeness)

Doubly Strange Baryons



$$K^-p \to K^+ \Xi^-$$

 $\Xi^- \to \Lambda \pi^-$
 $\Lambda \to p \pi^-$

The Ξ^- has S=-2 and decays weakly.

The Ξ is sometimes called a "cascade".

Strange Resonances

• Strange vector mesons: $K^*(892)$

$$K^{*+} \to K^+ \pi^0, K^0 \pi^+$$

 $K^{*0} \to K^+ \pi^-, K^0 \pi^0$

They also (rarely) decay electromagnetically:

$$K^* \rightarrow K\gamma \ (BF \sim 10^{-3})$$

Vector mesons with no strangeness:

$$\phi(1020) \rightarrow K^+K^-, K^0\overline{K}^0$$

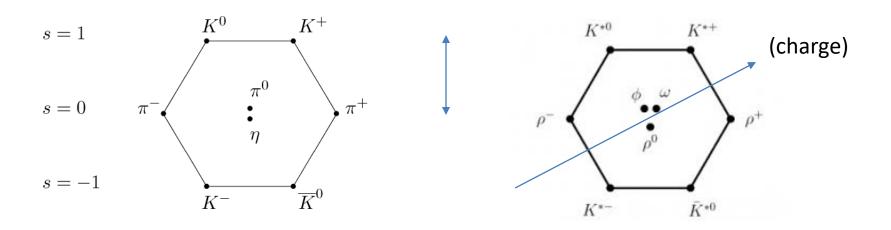
$$\omega(782) \rightarrow \pi^+\pi^-\pi^0, \pi^0\gamma$$

Strange baryon resonances:

$$\Sigma^{*-}$$
, Σ^{*0} , Σ^{*+}

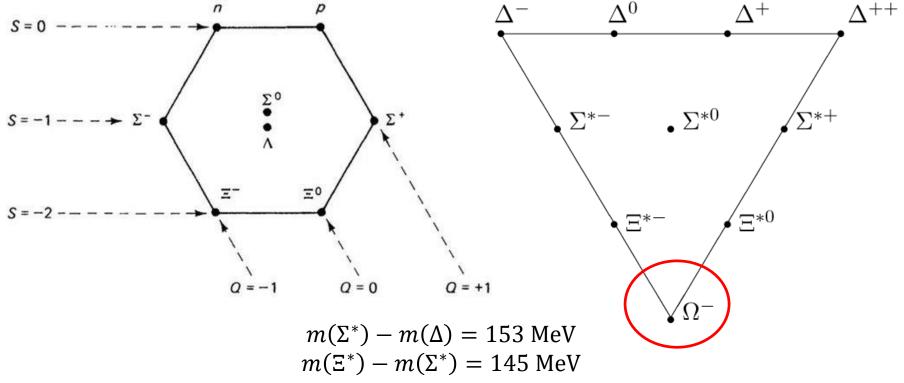
Meson Multiplets

• Plot I_3 on the x-axis and strangeness on the y-axis:



Baryon Multiplets

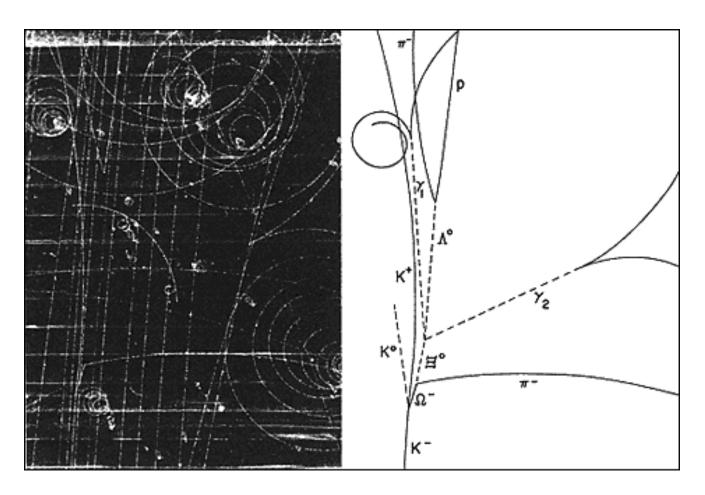
Do the same for the baryons:



Therefore, the Ω^- mass is estimated to be about

 $m(\Omega^-) = m(\Sigma^*) + 150 \text{ MeV} = 1530 \text{ MeV} + 150 \text{ MeV} = \textbf{1680 MeV}$ Predicted independently by Gell-Mann and Ne'eman in 1961.

The Omega Baryon



Discovered in 1964 using an 80-inch bubble chamber at the 33 GeV Brookhaven AGS.

$$m(\Omega^-) = 1672 \text{ MeV}$$

Interpreting Hadron Multiplets

Group theoretic approach (Gell-Mann):

$$3 \otimes \overline{3} = 8 \oplus 1$$
$$3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$$

- Constituent particle approach (Zweig):
 - Three types of quarks: u, d, s
 - Mesons are made of quark/anti-quark pairs
 - Baryons are made of three quarks
 - Quarks have charge $q_u = +2/3$, $q_d = q_s = -1/3$.
 - Quarks have spin 1/2

Quark Composition of the Mesons

- Pseudoscalar mesons are $|q \uparrow \overline{q'} \downarrow\rangle$ states
- Vector mesons are $|q \uparrow \overline{q'} \uparrow\rangle$ states

Meson	Quarks
π^+	$(uar{d})$
π^0	$(uar{u})$ or $\left(dar{d} ight)$
π^-	$(d \overline{u})$
K^+	$(u\bar{s})$
K^0	$(d\bar{s})$
$\overline{K}{}^{0}$	$(s\bar{d})$
<i>K</i> -	$(s\bar{u})$
η	?
η'	?

Meson	Quarks
$ ho^+$	$(u\bar{d})$
$ ho^0$	$(uar{u})$ or $\left(dar{d} ight)$
$ ho^-$	$(d\bar{u})$
K^{*+}	$(u\bar{s})$
K^{*0}	$(d\bar{s})$
\overline{K}^{*0}	$(s\bar{d})$
K*-	$(s\overline{u})$
ω	?
φ	?

Quark Composition of the Baryons

- Spin $\frac{1}{2}$ baryons are combinations with $|\uparrow\uparrow\downarrow\rangle$
- Spin $\frac{3}{2}$ baryons have $|\uparrow\uparrow\uparrow\rangle$

J=1/2 Baryon	Quarks
p	(uud)
n	(udd)
Σ^+	(uus)
Σ^0	(uds)
Σ^-	(dds)
Ξ^{0}	(uss)
Ξ-	(dss)
Λ	?

J=3/2 Baryon	Quarks
Δ^{++}	(uuu)
Δ^+	(uud)
Δ^0	(udd)
Δ^{-}	(ddd)
Σ^{*+}	(uus)
Σ^{*0}	(uds)
Σ^{*-}	(dds)
Ξ *0	(uss)
Ξ*-	(dss)
Ω^-	(sss)

The Quark Model

- We can start to think of mesons as bound states of quarks (like the Hydrogen atom)
- Spins that are ↑↑ are excited states of ↑↓
- The potential energy function must be of the form

$$V = V(r) + \kappa \frac{\vec{s}_1 \cdot \vec{s}_2}{m_1 m_2}$$

- If the strong interaction doesn't care about quark flavor, then all mesons have the same ground-state energy.
- Empirical mass formula:

$$m = m_1 + m_2 + \kappa \frac{\vec{s}_1 \cdot \vec{s}_2}{m_1 m_2}$$

• What are the expectation values of the $\vec{s}_1 \cdot \vec{s}_2$ operator?

The Quark Model

Recall that
$$\vec{S} = \vec{s}_1 + \vec{s}_2$$
 and that $\left| \vec{S} \right|^2 = S(S+1)$

$$\left| \vec{S} \right|^2 = (\vec{s}_1 + \vec{s}_2) \cdot (\vec{s}_1 + \vec{s}_2)$$

$$= |\vec{s}_1|^2 + |\vec{s}_2|^2 + 2 \vec{s}_1 \cdot \vec{s}_2$$

$$\vec{s}_1 \cdot \vec{s}_2 = \frac{1}{2} \left(\left| \vec{S} \right|^2 - |\vec{s}_1|^2 - |\vec{s}_2|^2 \right)$$

$$= \frac{1}{2} \left(S(S+1) - \frac{3}{4} - \frac{3}{4} \right)$$

$$\vec{s}_1 \cdot \vec{s}_2 = \begin{cases} -3/4 & \text{when } S = 0 \text{ (pseudoscalar)} \\ +1/4 & \text{when } S = 1 \text{ (vector)} \end{cases}$$

Quark Model Wave Functions

• The neutral mesons are orthogonal linear combinations of $(u\bar{u}),(d\bar{d})$ and $(s\bar{s})$ states.

$$\pi^{0} = \frac{1}{\sqrt{2}} \left(u\bar{u} - d\bar{d} \right)$$

$$\eta \approx \frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right)$$

$$\eta' \approx \frac{1}{\sqrt{3}} \left(u\bar{u} + d\bar{d} + s\bar{s} \right)$$

Vector mesons:

$$\rho^{0} = \frac{1}{\sqrt{2}} \left(u\bar{u} - d\bar{d} \right)$$

$$\omega \approx \frac{1}{\sqrt{2}} \left(u\bar{u} + d\bar{d} \right)$$

$$\phi \approx s\bar{s}$$

Color Quantum Numbers

- Pauli's exclusion principle states that identical Fermions can't occupy the same state.
- There is apparently a problem with the spin 3/2 baryons:

$$\Delta^{++} = u \uparrow u \uparrow u \uparrow u \uparrow$$

$$\Delta^{-} = d \uparrow d \uparrow d \uparrow$$

$$\Omega^{-} = s \uparrow s \uparrow s \uparrow$$

- Also, the exchange of identical fermions must be antisymmetric.
- It was proposed that quarks must carry an additional quantum number that we now call "color".
- The "color" part of the wave function is completely antisymmetric.
- Physical hadrons are color singlets they have no net color charge.

Color Wave Functions

Mesons always have the color symmetric wave function:

$$\psi_c = \frac{1}{\sqrt{3}} (R\bar{R} + G\bar{G} + B\bar{B})$$

 Baryons always have the color anti-symmetric wave function:

$$\psi_c = \frac{1}{\sqrt{6}}(RGB - RBG + GBR - GRB + BRG - BGR)$$

- These factor from the rest of the hadron spin-flavor wave function.
- The baryon spin-flavor wave function must be symmetric.
- Color eventually became a central concept in the description of the strong interaction.

Orbital Angular Momentum

- Bound states of quarks behave sort of like hydrogen atoms except
 - The masses of the constituents are similar
 - The quarks are light enough that they are relativistic
- Nevertheless, excited hadrons can be associated with the same quantum numbers used to describe the hydrogen atom
- Spectroscopic notation:

$$n^{2s+1}L_j$$

- Orbital quantum numbers are written S, P, D, F for L=0,1,2,3,...
- Many excited mesons have been assigned such quantum numbers...

Excited Meson States

Table 14.2: Suggested $q\bar{q}$ quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson Summary Table. The wave functions f and f' are given in the text. The singlet-octet mixing angles from the quadratic and linear mass formulae are also given for the well established nonets. The classification of the 0^{++} mesons is tentative and the mixing angle uncertain due to large uncertainties in some of the masses. Also, the $f_0(1710)$ and $f_0(1370)$ are expected to mix with the $f_0(1500)$. The latter is not in this table as it is hard to accommodate in the scalar nonet. The light scalars $a_0(980)$, $f_0(980)$, and $f_0(600)$ are often considered as meson-meson resonances or four-quark states, and are therefore not included in the table. See the "Note on Scalar Mesons" in the Meson Listings for details and alternative schemes.

$n^{2s+1}\ell_J$	J^{PC}	$I=1 \ u\overline{d},\overline{u}d,rac{1}{\sqrt{2}}(d\overline{d}-u\overline{u})$	$egin{aligned} I &= rac{1}{2} \ u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s \end{aligned}$	I=0 f'	I = 0 f	$ heta_{ ext{quad}}$ [°]	$ heta_{ m lin}$ [°]
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$	-11.5	-24.6
1 3S1	1	$\rho(770)$	$K^*(892)$	$\phi(1020)$	$\omega(782)$	38.7	36.0
1 ¹ P ₁	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$		
1 ³ P ₁	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$		
$1 {}^{3}P_{2}$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_2^{\prime}(1525)$	$f_2(1270)$	29.6	28.0
$1 ^1D_2$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 {}^3D_1$	1	ho(1700)	K*(1680)		$\omega(1650)$		
$1 ^3D_2$	2		$K_2(1820)$				
$1 ^3D_3$	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0	31.0
$1\ ^{3}F_{4}$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$		

• The "full width", Γ , is interpreted as a decay rate:

$$dN = -\Gamma N dt$$

$$N(t) = N(0) e^{-\Gamma t}$$

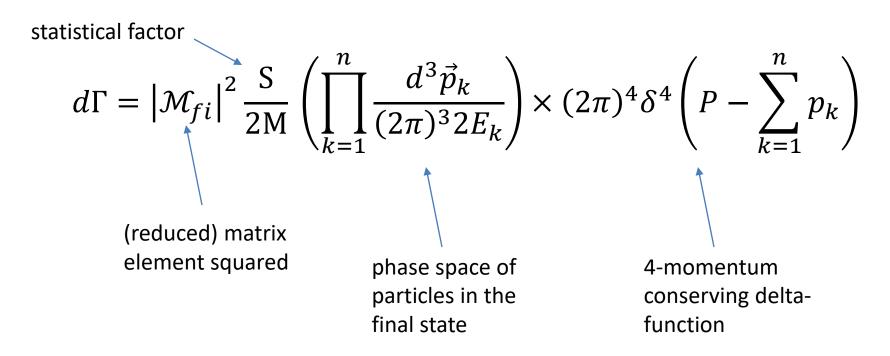
 The total decay rate is the sum of the decay rates to exclusive final states:

$$\Gamma_{total} = \sum_{i=1}^{n} \Gamma_{i}$$

 The branching fraction is the probability that a specific final state will be observed:

$$B_i = \frac{\Gamma_i}{\Gamma_{total}}$$

Not derived here:



 The phase space is the density of allowed quantum mechanical states with a specific energy.

Two-body decays:

$$\Gamma = \frac{S|\vec{p}|}{8\pi M} \left| \mathcal{M}_{fi} \right|^2$$

 Strictly speaking though, because of Heisenberg's uncertainty principle, the energy (ie, mass) of the state might not be precisely known...

$$\Delta E \Delta t \sim \frac{\hbar}{2}$$

$$\Delta t = \frac{1}{\Gamma}$$

• In practice, we can replace the delta-function over energy with a Breit-Wigner function:

• The "mass" and "width" are parameters, determined from analyses of the resonance shape.

- Strong decays will dominate unless they are forbidden by conservation laws
- Electromagnetic decays will also occur (unless they are forbidden) but with lower rates
- Weak decays generally dominate only when other decays are forbidden

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

K*(892) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Confidence	level	
$\overline{\Gamma_1}$	$K\pi$	$\sim~100$	%		
Γ_2	$(K\pi)^{\pm}$	(99.900 ± 0.009)	%		
Γ_3	$(K\pi)^0$	(99.754 ± 0.021)	%		$\Gamma \approx 46 \text{ MeV}$
Γ ₃ Γ ₄	$K^0\gamma$	(2.46 ± 0.21)	$\times 10^{-3}$		$1 \sim 40 \text{ MeV}$
Γ_5	$K^{\pm}\gamma$	(1.00 ± 0.09)	\times 10 ⁻³		
Γ_6	$K\pi\pi$	< 7	$\times 10^{-4}$	95%	

Quark Current Lines

- We can describe decay mechanisms by drawing the flow of quark currents
- These are not strictly speaking Feynman diagrams, but they borrow some of the concepts
 - Time flows from left to right
 - Anti-quark currents flow backwards
- Example: $K^{*0} \to K^+\pi^ K^{*0} = \begin{cases} d \\ \bar{s} \end{cases}$ $\pi^- = \begin{cases} d \\ \bar{u} \end{cases}$ p = 287 MeV
 - Fractions of $K^+\pi^-$ and $K^0\pi^0$ are determined from isospin analysis...

Isospin Analysis of Strong Decays

$$K^{*0} \to K^{+}\pi^{-} \text{ and } K^{*0} \to K^{0}\pi^{0}$$

$$1 \times 1/2 \xrightarrow{3/2} \xrightarrow{3/2} \xrightarrow{3/2} \xrightarrow{1/2} \xrightarrow{1/$$

Electromagnetic Decays

- These are similar to transitions in hydrogen atoms
- Dipole transitions:

$$|\uparrow\uparrow\rangle\rightarrow|\uparrow\downarrow\rangle+\gamma$$

• The electromagnetic coupling constant (α) must be about 30 times smaller than the strong coupling constant (α_s).

Zweig Suppression/OZI Rule

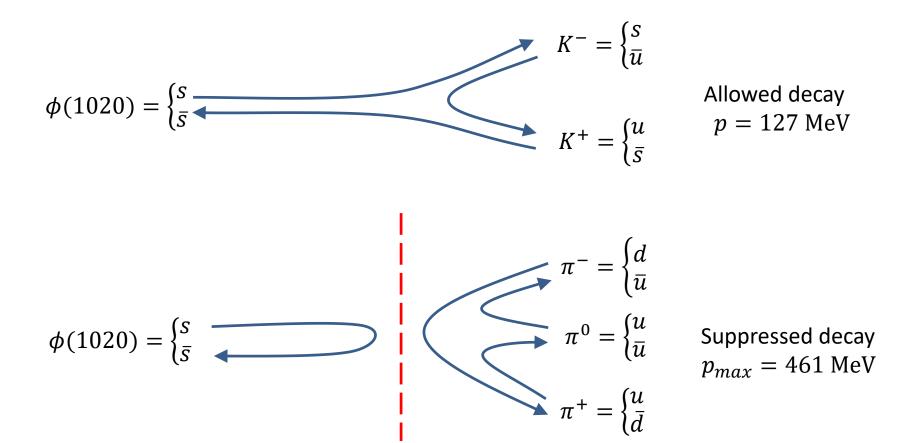
• Usually, decays that release a lot of kinetic energy (q^2) are enhanced because there are more quantum mechanical states with large energies than with small energies.

But...

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	K+K-	(49.2 ±0.5) %	S=1.3
Γ_2	$K_L^0 K_S^0$	$(34.0 \pm 0.4)\%$	S=1.3
Γ_3	$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.24 ± 0.33) %	S=1.2
Γ_4	$ ho\pi$		
Γ_5	$\pi^{+}\pi^{-}\pi^{0}$		
Γ ₆ Γ ₇	$\eta \gamma$	$(1.303\pm0.025)\%$	S=1.2
Γ_7	$\pi^{0}\gamma$	$(1.30 \pm 0.05) \times 10$)-3
Γ ₈	$\ell^+\ell^-$	_	

Zweig Suppression/OZI Rule



$$\Gamma = 4.249 \text{ MeV}$$