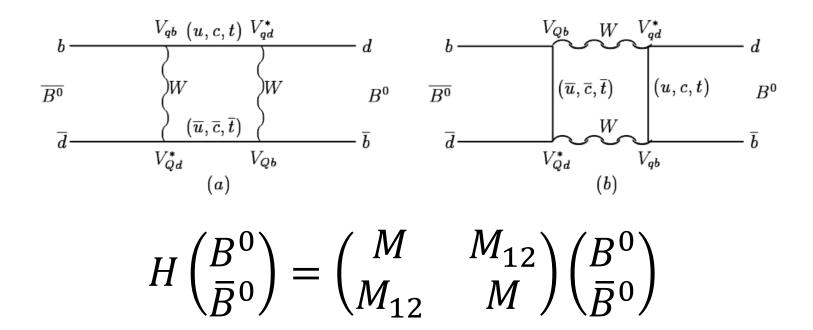


Physics 56400 Introduction to Elementary Particle Physics I

Now in PowerPoint!

Lecture 25 Fall 2018 Semester


Prof. Matthew Jones

Neutrino Oscillations

- Kaon, B-meson, and neutrino oscillations are a natural consequence of a coupled oscillator system.
- Most features have good analogies in classical mechanics: https://youtu.be/kqOARsCJC-8
- General features:
 - Two oscillators that are essentially identical
 - Weak coupling
 - Motion of one mass excites motion in the other
 - Slow oscillation of motion between the two masses

B-Meson Oscillations

- Strong eigenstates have definite flavor (b or \overline{b})
- Weak coupling via box diagrams:

B-Meson Oscillations

Physical masses are eigenvalues of the Hamiltonian:

$$m_H = M + M_{12}$$

$$m_L = M - M_{12}$$

The CP-eigenstates are

$$B_{L} = \frac{1}{\sqrt{2}} (B^{0} + \bar{B}^{0})$$

$$B_{H} = \frac{1}{\sqrt{2}} (B^{0} - \bar{B}^{0})$$

How does this relate to the mechanical example?

B-Meson Oscillations

- There are two modes of oscillation:
 - Even (both pendula swing the same direction)
 - Odd (pendula swing in opposite directions)
- These have different energies:
 - Even modes have less energy
 - Odd modes store energy in the coupling
- Probability of mixed/unmixed oscillates:

$$P(B^{0}, t|B^{0}) = |\langle B^{0}|\Psi(t)\rangle|^{2} = \frac{e^{-\Gamma t}}{2} (1 + \cos \Delta mt)$$

$$P(\bar{B}^{0}, t|B^{0}) = |\langle \bar{B}^{0}|\Psi(t)\rangle|^{2} = \frac{e^{-\Gamma t}}{2} (1 - \cos \Delta mt)$$

Neutrino Oscillations

 We know that neutrinos seem to carry flavor quantum numbers:

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \qquad \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \qquad \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$

- Evidence for neutrino oscillations:
 - Solar neutrino problem: $\nu_e \rightarrow \nu_\mu$
 - Atmospheric neutrinos: $\nu_{\mu} \rightarrow \nu_{\tau}$
- Flavor eigenstates are not eigenstates of the Hamiltonian.
 - Flavor eigenstates: $v_{\alpha} = v_{e}$, v_{μ} , v_{τ}
 - Mass eigenstates: $v_i = v_1, v_2, v_3$
- Unitary transformation:

$$\ket{
u_lpha} = \sum_i U_{lpha i}^* \ket{
u_i} \ \ket{
u_i} = \sum_i U_{lpha i} \ket{
u_lpha}$$

Neutrino Mixing

- CKM matrix (quarks) → PMNS matrix (neutrinos)
- First consider only two families:

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$|\nu_{\alpha}\rangle = \sum_{i=1,2} U_{\alpha i}^* |\nu_i\rangle$$

$$|\nu(t)\rangle = \sum_{i=1,2} U_{\alpha i}^* e^{-iE_i t} |\nu_i\rangle = \sum_{i=1,2} U_{\alpha i}^* e^{-iE_i t} \sum_{\beta=e,\mu} U_{\beta i} |\nu_\beta\rangle$$

$$\langle \nu_{\beta} | \nu(t) \rangle = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-iE_{i}t}$$

Two Family Neutrino Mixing

$$P(\nu_{e} \to \nu_{\mu}) = |\langle \nu_{\mu} | \nu(t) \rangle|^{2} = \left| \sum_{i=1,2} U_{\mu i} U_{ei}^{*} e^{-iE_{i}t} \right|^{2}$$

$$= |\cos \theta \sin \theta e^{-iE_{1}t} - \cos \theta \sin \theta e^{-iE_{2}t}|^{2}$$

$$= \sin^{2} \theta \cos^{2} \theta |e^{-iE_{1}t} - e^{-iE_{2}t}|^{2}$$

$$= \frac{\sin^{2} 2\theta}{4} \left(2 - 2 Re(e^{-i(E_{1} - E_{2})t}) \right)$$

$$= \sin^{2} 2\theta \sin^{2} \left(\frac{E_{1} - E_{2}}{2} \right) t$$

Two Family Neutrino Mixing

• The neutrinos are ultrarelativistic, so

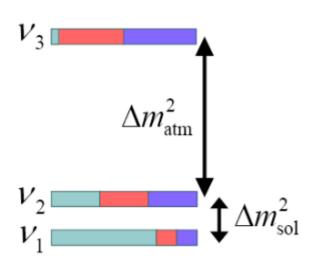
$$E_i = \sqrt{p^2 + m_i^2} \approx p + \frac{m_i^2}{2E}$$

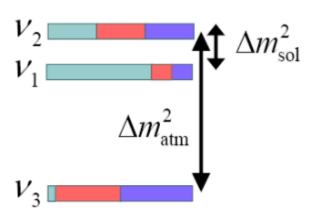
$$P(\nu_e \to \nu_\mu) = \sin^2 2\theta \sin^2 \frac{\Delta m^2 t}{4E}$$

• But in natural units, t = L so

$$P(\nu_e \to \nu_\mu) = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

- The amplitude of the oscillation probability tells us about the mixing angle.
- The oscillation frequency tells us about the difference of the squared masses.


Three-Family Neutrino Mixing

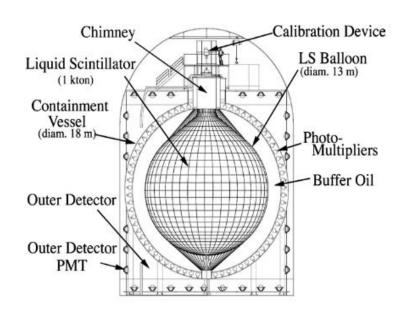

- CKM matrix (quarks) → PMNS matrix (neutrinos)
- Parameterized by three angles and one phase
 - $-\theta_{12}$ (solar/reactor neutrinos),
 - $-\theta_{23}$ (atmospheric neutrinos)
 - $-\theta_{13}$, δ_{CP}
 - Three Δm^2 parameters
- What kind of experiments can we do?
 - Neutrino disappearance
 - Neutrino appearance
 - Neutrino vs anti-neutrino
 - Amplitude as a function of L

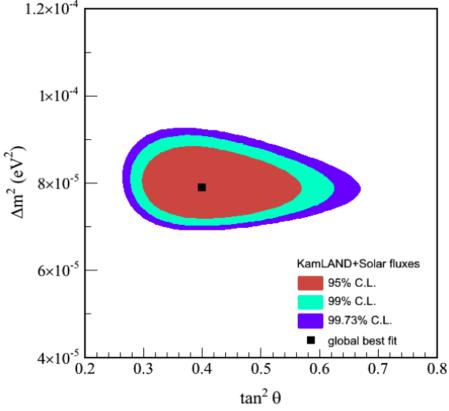
Oscillation Measurements

- 1. What are the values of Δm_{12}^2 , Δm_{23}^2 and Δm_{13}^2 ?
- 2. Is the mass hierarchy normal or inverted?
 - Normal hierarchy: $\Delta m_{21}^2 \ll (\Delta m_{32}^2 \simeq \Delta m_{31}^2 > 0)$
 - Inverted hierarchy: $\Delta m_{21}^2 \ll -(\Delta m_{31}^2 \simeq \Delta m_{32}^2 < 0)$
- 3. What are the mixing angles?
- 4. What is the CP-violating phase?
- 5. Direct measurements of neutrino masses
- 6. Is the neutrino its own anti-particle?

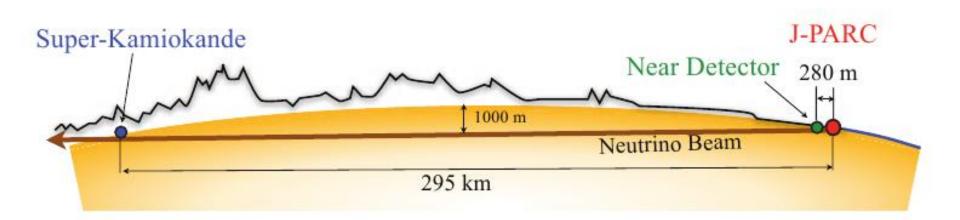
Neutrino Mass Hierarchy

"Normal" Hierarchy "Inverted" Hierarchy

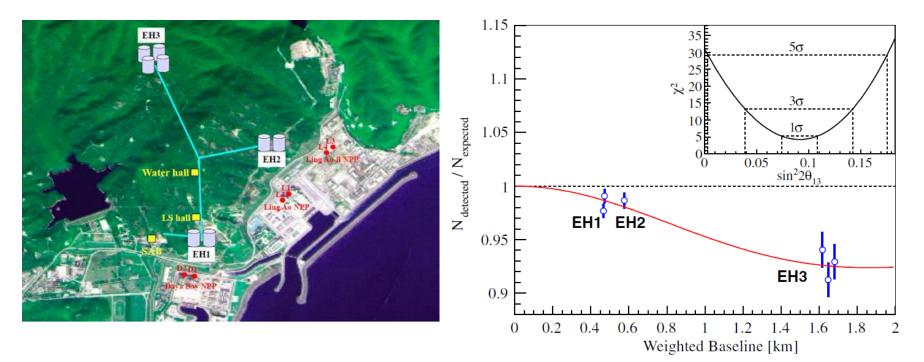




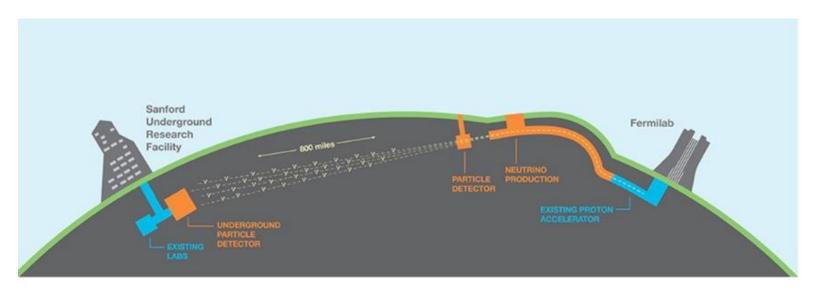
Solar and Reactor Neutrinos


• KamLAND detects neutrinos from several Japanese nuclear reactors: $L \sim 175 \ km$

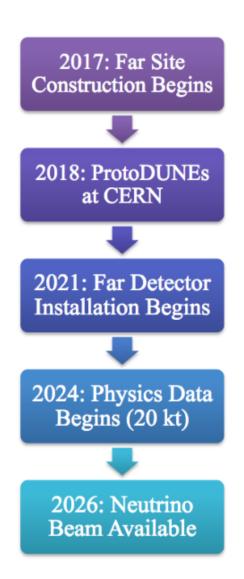
T2K and Daya Bay


- These try to measure θ_{13} by looking for reactor anti-neutrino disappearance
- T2K is a long baseline $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment

Daya Bay Experiment


Measures survival probability of reactor anti-neutrinos:

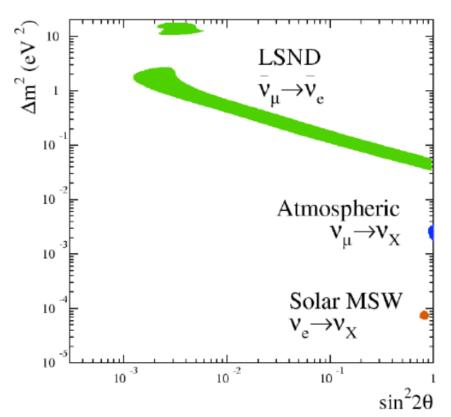
$$P_{\overline{
u}_e o \overline{
u}_e} = 1 - \cos^4 heta_{13}\sin^22 heta_{12}\sin^2\Delta_{21} - \sin^22 heta_{13}(\cos^2 heta_{12}\sin^2\Delta_{31} + \sin^2 heta_{12}\sin^2\Delta_{32})_{12}$$


$$\sin^2 2\theta_{13} = 0.084 \pm 0.005$$

Deep Underground Neutrino Experiement

- Expects to measure mass hierarchy and δ_{CP} in about 5-10 years of running.
 - Sensitivity depends on the value of δ_{CP}

DUNE Timeline

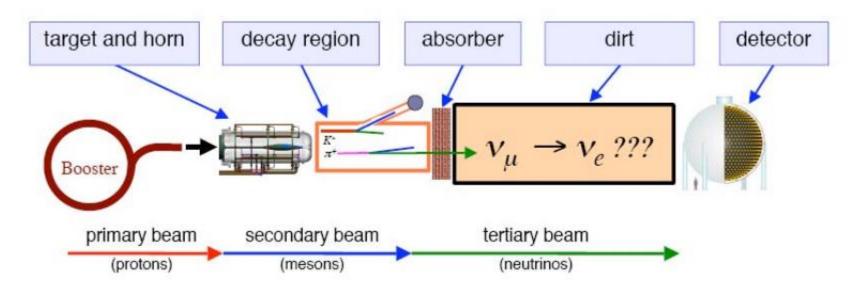


Coincides with operation of Mu2e experiment.

Ideally, they expect to share the beam equitably...

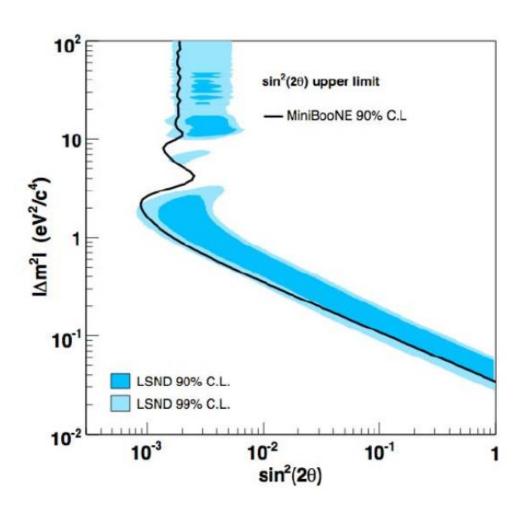
The LSND Experiment

• This is a short baseline (30 m) experiment that looks for the appearance of $\bar{\nu}_e$ in a beam of $\bar{\nu}_\mu$



The problem is that $\Delta m_{nucl}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$

Is this evidence for a 4th generation of neutrino?


That would be weird...

MiniBoone Experiment

- This looks for u_e appearing in a beam of u_μ
- More challenging than initially expected due to some aspects of low energy nuclear physics

MiniBoone Experiment

This seems to rule out the LSND result...

Acknowledgements

 Some figures have been shamelessly stolen from Gary Cheng's excellent summary:

http://www.astro.caltech.edu/~golwala/ph135c/20ChengNeutrinoOscillations.pdf