Double Beta Decay

TWO-NEUTRINO DECAY

•(Z, A) \rightarrow (Z + 2, A) + $e_1^- + e_2^- + \overline{v}_{e1} + \overline{v}_{e2}$

Transformation of two neutrons into protons

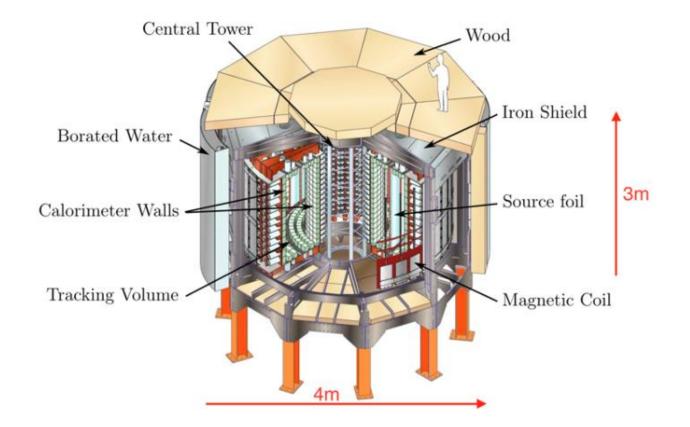
Decays only if the initial nucleus is less bound than final one
Only fulfilled in nature for even-even nuclei

•Conserves electric charge and lepton number

NEUTRINOLESS DECAY

•(Z, A) \rightarrow (Z + 2, A) + e_1^{-} + e_2^{-}

•Violates lepton number conservation


> Forbidden in standard electroweak theory

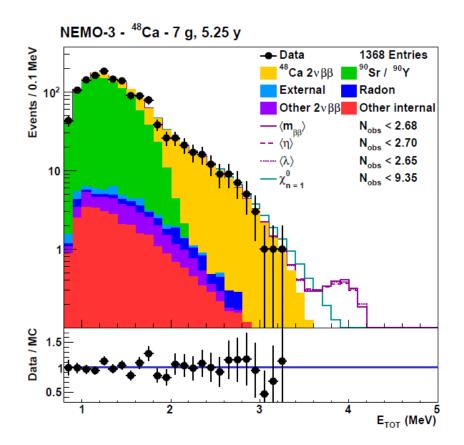
Observation would indicate that neutrinos are massive

Majorana particles

Could be used to measure neutrino mass

NEMO-3

EXPERIMENT


- •Search for $0\nu\beta\beta$ is a search for a peak superimposed on a continuum
 - good energy resolution and therefore signal-to-background ratio is needed
 - > Main background is the 2v $\beta\beta$ signal
- •Four 0vββ mechanism are investigated:
 - >exchange of the light neutrinos
 - Supersymmetric processes
 - through coupling of right and left-handed quarks and leptons
 - >emission of a single Majorana particle

NEMO-3 RESULTS

•Collected data between 2003 and 2011

 Low energies: ⁹⁰Sr and ⁹⁰Y background events dominate

 Higher energies: Signal of 2vββ clearly visible

SUMMARY

- Investigation of the double-beta decay of ⁴⁸Ca with a total expose time of more than five years
 - > Larger and purer sample of $\beta\beta$ events has been selected than before

• Half-life:
$$T^{2v}_{1/2} = [6.4^{+0.7}_{-0.6} (stat)^{+1.2}_{-0.9} (syst.)] \times 10^{19} \text{ yr}$$

Search for 0vββ decays has been performed
No signal has been found, new limits for different processes has been determined