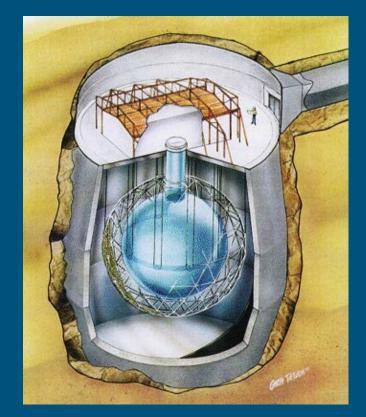

Solar Neutrinos

Lingyi Dong Presentation for Phys 564

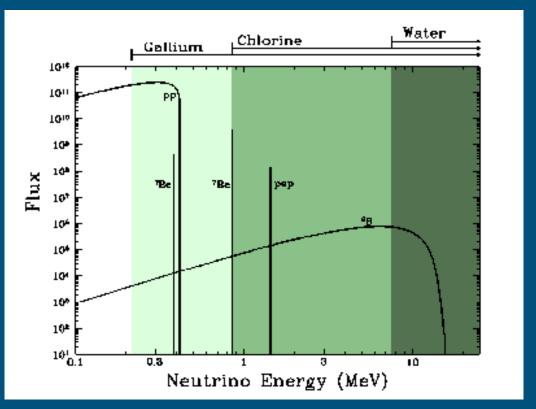
Source of Solar Neutrinos

- The Sun can only be powered by nuclear fusion at its core
- Relatively young star, with ~73% Hydrogen, ~25%
 Helium and ~ 2% metal

Solar Neutrino Problem

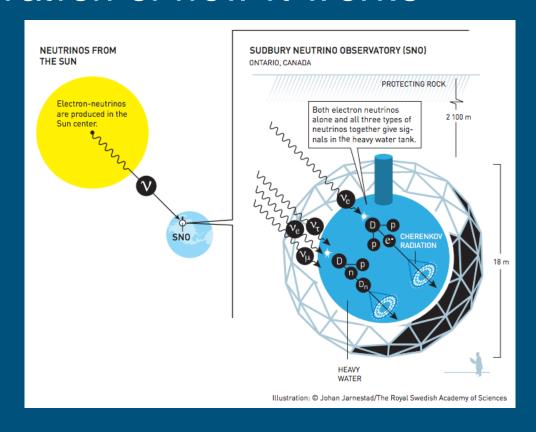

- Our sun only produces electron neutrinos
- We think we understand stellar structure well
 - Standard solar model (SSM)
- Theoretically expected electron neutrino flux does not match that has been observed (first noticed in the 1960s)
 - ~⅓ of the expected value is observed
 - XX, XX, XX (detectors that report this)
- Problem arise: why they do not match?

Solution: Neutrino Oscillation


- Proposed by Italian physicist Bruno Protecorvo in 1957
- The theory in short is, neutrinos have masses, and will change their flavors (e.g., transform from electron neutrino to muon neutrino) after traveling distance
- SNP solved: electron neutrinos originally produced in the interior of the Sun changed into other neutrinos on their trip to the Earth
 - Confirmed by Super-K and SNO

Sudbury Neutrino Observatory (SNO)

- Located 2100m underground in Ontario,
 Canada
- Using heavy water (D_2O) for detection
- Able to observe electron neutrinos alone and all three types of neutrino together
- Sensitive to neutrinos from ⁸B decays


Detectability of SNO

Why Deuterium?

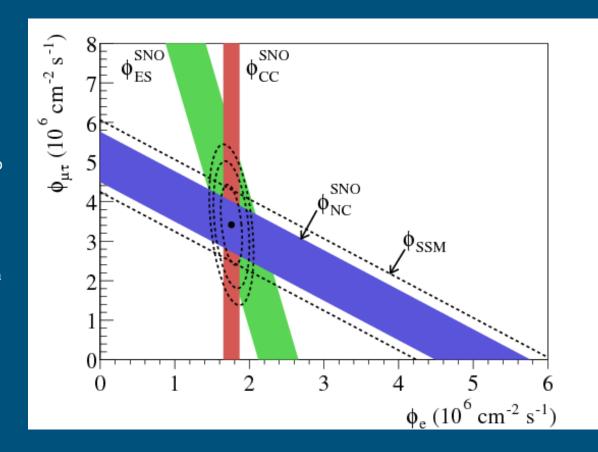
- Allows spontaneous measurements of two separate reactions:
 - $v_e + d \rightarrow p + p + e^-$, a charged current (CC) reaction that was sensitive only to electron neutrinos
 - determined by observing the Cherenkov light due to fast electrons
 - $v_x + d \rightarrow n + p + v_x$, a neutral current (NC) reaction that was equally sensitive to all neutrino types
 - determined by three methods in three phases in the program
 - $v_x + e^- \rightarrow v_x + e^-$, the elastic scattering (ES) of electrons by neutrinos, which is six times more sensitive to electron neutrinos than other flavors
 - Again determined by the Cherenkov light

An illustration of how it works

Charged Current (CC) Reaction

- $v_e + d \rightarrow p + p + e^-$
- W boson changed and most energy is transferred to electron, making it relativistic
- Fast moving electron exceed the speed of light in heavy water, causing Cherenkov effect
- The SSM predicts about 30 charged current events per day in SNO

Elastic Scattering (ES)


- $\nu_{x} + e^{-} \rightarrow \nu_{x} + e^{-}$
- Primary mechanism in other light water experiment
- All three flavors participate in this reaction by exchanging Z bosons
- Electron neutrino can exchange W boson as well, so it dominates the reaction of a factor of ~6
- Electron gains energy and produce Cherenkov light
- The SSM predicts about 3 charged current events per day in SNO

Neutral Current (NC) Reaction

- $v_x + d \rightarrow n + p + v_x$
- Z boson is exchanged, and it has the same chance for all three flavors
- Phase I
 - Pure heavy water
- Phase II
 - With NaCl dissolved
- Phase II
 - With 3He-filled neutron counters placed
- The SSM predicts about 30 charged current events per day in SNO

Results

"Solar neutrinos from 8B decay have been detected at the Sudbury Neutrino Observatory ... Comparison of $\phi^{cc}(v_e)$ the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3s difference, ..., providing evidence of an active non-ne component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44 \pm 0.99 \times 10⁶ cm^{-2} s^{-1} ."

References

- SNO Collaboration, https://sno.phy.queensu.ca/
- A. Bellerive et al., *The Sudbury Neutrino Observatory*, arXiv:1602.02469
- Q. R. Ahmad et al., *Measurement of the Rate of* \(\nu_e + d \) \(\text{rightarrow p + p + e^ Interactions} \) \(\text{Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301} \)
- Wikipedia, Solar Neutrino Problem, https://en.wikipedia.org/wiki/Solar neutrino problem
- University of Washington, *UW Physicists Celebrate Contribution to Nobel-Winning Neutrino Discoveries*, http://www.washington.edu/news/blog/uw-physicists-celebrate-contribution-to-nobel-worthy-neutrino-discoveries-2/

Thank you!