## Physics 536 - Assignment #8

- 1. Prepare a table showing the maximum unsigned integer that can be represented using 8, 10, 16, 20, 30 and 32 bits.
- 2. Calculate the decimal representation of the following numbers in IEEE 754 binary32 format:
  - (a) 0100 1101 1000 1110 1111 0011 1100 0010
  - **(b)** 0000 1000 0101 1100 0011 0000 0101 1100
  - (c) 1010 0000 0011 1101 0010 0110 1101 0000

Hint: these will be familiar physical constants in a well known system of units.

3. In the 100BASE-TX standard for fast Ethernet, a pair of wires is used to transmit serial data that has been encoded using the 4B5B code, a subset of which is shown in the following table:

| Name     | 4b   | 5b    |
|----------|------|-------|
| 0        | 0000 | 11110 |
| 1        | 0001 | 01001 |
| 2        | 0010 | 10100 |
| 3        | 0011 | 10101 |
| 4        | 0100 | 01010 |
| 5        | 0101 | 01011 |
| 6        | 0110 | 01110 |
| 7        | 0111 | 01111 |
| 8        | 1000 | 10010 |
| 9        | 1001 | 10011 |
| A        | 1010 | 10110 |
| В        | 1011 | 10111 |
| С        | 1100 | 11010 |
| D        | 1101 | 11011 |
| ${ m E}$ | 1110 | 11100 |
| F        | 1111 | 11101 |

Thus, for every 4 bits of data to be transferred, the 5 bits of encoded data must be generated and transmitted on the pair of wires. Write the five boolean algebraic expressions that give the bits  $e_0$ ,  $e_1$ ,  $e_2$   $e_3$  and  $e_4$  of the encoded data in terms of the bits  $d_0$ ,  $d_1$ ,  $d_2$ , and  $d_3$  of the un-encoded 4-bit data.

- **4.** A decimal counter needs to generate a carry signal when its value equals 9.
- (a) Express the carry signal in terms of the 4 bits,  $d_0$ ,  $d_1$ ,  $d_2$  and  $d_3$  used to represent the value of the counter.
- (b) Draw a schematic that implements this function using one two-input NAND gate and one three input NOR gate.