Physics 536 - Assignment #6 - Due March 19^{th}

1. Fairchild Semiconductors manufactures the 1N916 small signal diode for which the reverse saturation current is specified as being $I_0 = 10^{-13}$ A. The maximum power that this type of diode can dissipate is specified to be 500 mW.

(a) From the equation

$$i = I_0(e^{eV/kT} - 1), (1)$$

calculate the power dissipated by such a diode when it is conducting a current of 0.5 A at $T = 25^{\circ}C$.

(b) Suppose the temperature of the diode increased to $T = 250^{\circ}C$. Calculate the dissipated power at this higher temperature. Does this exceed the maximum power that the diode is capable of dissipating?

2. The SPICE model for the 1N916 diode is

.MODEL 1N916 D(IS=0.1P RS=8 CJO=1P TT=12N BV=100 IBV=0.1P)

Simulate the following circuit:

in which D1, D2 and D3 are type 1N916 diodes, $R1 = 100 \Omega$, $R2 = 10 k\Omega$ and $V_{in}(t)$ is a sinusoidal voltage source with a peak-to-peak amplitude of 2 V and a frequency of 10 kHz, which can be simulated using

VIN 1 0 DC 0 SIN(0 2V 10KHZ)

and a transient analysis specified using

.TRAN 1US 0.5MS 0 1US

to force SPICE to use a maximal time step of 1 μ s.

Provide the SPICE netlist and a graph of the voltage at nodes 1 and 2. At approximately what positive and negative voltages does the output signal start to become limited by the diodes?

3. The SPICE model for a small signal n-channel JFET is

.MODEL MYJFET NJF(VTO=-3V IS=1NA BETA=0.001 CGS=2P CGD=2P)

which is used in a circuit using

Jx d g s MYJFET

in which d, g and s are the node numbers of the drain, gate and source, respectively. Using the following circuit:

perform a DC operating point analysis for $V_G = 0, 1, 2$ and 3 V, to generate a table of values for I_D as a function of V_{GS} for this JFET. What are the parameters I_{DSS} and V_P , that characterize this JFET?

4. Consider the following common source amplifier circuit:

in which J1 is to be modelled using

.MODEL ANOTHERJFET NJF(VTO=-4V IS=1NA BETA=0.00125 CGS=2P CGD=2P)

which has $I_{DSS} \approx 20$ mA and $V_P = -4$ V. The voltage source, $V_{in}(t)$ has a peak-to-peak amplitude of 10 mV and a frequency of 10 kHz, modelled using

VIN 5 0 DC 0 SIN(0 0.01V 10KHZ)

and where $R1 = 10 \text{ k}\Omega$ represents the large output impedance of a non-ideal voltage source, such as the element of a microphone.

(a) Select a reasonable value for C_1 such that $R_1C_1 \gg 1/f$ where f is the frequency of the input voltage source.

(b) Calculate the voltage, V_{GS} that will result in a quiescent current of $I_0 = 10$ mA.

(c) What value of R_2 should be used to provide an input impedance impedance of 10 M Ω ?

(d) Calculate the value of R_S that will result in the desired voltage V_{GS} when no input signal is present.

(e) Calculate the transconductance, g_m , at the quiescent point.

(f) Calculate the value of R_D that will produce a voltage gain of $A_V = -5$ when $R_L = \infty$.

(g) Calculate the minimum acceptable voltage, V_{DD} , that will be needed for the JFET to be operating in the active region.

(h) What is the output impedance of the circuit? What value of the load resistance, R_L , will maximize the power transferred to the load?

(i) Hand in the netlist for this circuit, the output of the operating point analysis and a graph of the input and output waveforms.

(j) Simulate the circuit with $R_2 = 1 \text{ G}\Omega$. Why does the circuit now fail to operate as desired?