Physics 536 - Second Exam March 28, 2007

1. Consider the circuit shown below:

Assume that the voltage drop across the diodes is 0.7 volts when they are forward biased.

- (a) What is v_{out} when $v_{in} = 1 \text{ V}$?
- (b) What is v_{out} when $v_{in} = -1$ V?
- (c) What is v_{out} when $v_{in} = 5$ V?
- (d) What is v_{out} when $v_{in} = -5$ V?
- 2. Draw the following operational amplifier circuits and give an expression for the gain in terms of any resistors that may be present in each circuit:
 - (a) An voltage follower,
 - (b) An inverting amplifier,
 - (c) An non-inverting amplifier.

3. Consider the FET amplifier circuit:

Assume that the drain current is described by the formula

$$I_D = I_{DSS} \left(1 + \frac{V_{GS}}{|V_P|} \right)^2 \tag{1}$$

in which $I_{DSS} = 10 \text{ mA}$ and $V_P = -2 \text{ V}$.

- (a) Calculate the value of V_{GS} that will produce a quiescent current of $I_D = 2.5 \text{ mA}$.
- (b) What is the transconductance at this operating point? Recall that

$$g_m = \frac{\partial I_D}{\partial V_{GS}}. (2)$$

- (c) Assuming that R_{in} is very large but maintains the gate at a potential of 0 volts, what value of R_S will yield the value of V_{GS} determined in part (a)?
 - (d) The voltage gain of the amplifier is given by

$$G = \frac{-R_D}{1/g_m + R_S}. (3)$$

What value of R_D will give a small signal voltage gain of -6?

(e) What is the output impedance of this amplifier circuit?

- 4. For an NPN transistor that is correctly biased, the emittor will be at a potential that is V_{be} lower than the base: $V_e = V_b V_{be}$.
 - (a) If the base of a PNP transistor is at a potential V_b , what is the potential of its emittor?
 - (b) Consider the following circuit:

Assuming that V_{be} is the same for both transistors, calculate the current, I_1 , that flows through Q_1 in terms of v_1 and the current, I_2 , that flows through Q_2 in terms of v_2 . Assume that the voltages v_1 and v_2 allow both transistors to operate in the active region.

(c) By considering the current conservation rule, what current will flow through the resistor, R_L ?