

# Physics 53600 Electronics Techniques for Research



#### Spring 2020 Semester

Prof. Matthew Jones



• Total equivalent impedance:

$$Z = R + j\omega L + (G + j\omega C)^{-1}$$
$$= x + \frac{1}{y}$$
$$x = R + j\omega L$$
$$y = G + j\omega C$$

- Suppose we had an infinite chain of these lumped circuit elements.
- If we add one more lump, the impedance should not change:

$$Z = R + j\omega L + \left(G + j\omega C + \frac{1}{Z}\right)^{-1}$$
$$= x + \left(y + \frac{1}{Z}\right)^{-1}$$
$$Z = x + \sqrt{\frac{x^2}{4} + \frac{x}{y}}$$

Now suppose that each lump was split into n smaller lumps

• At high frequencies,  $\omega L \gg R$  and  $\omega C \gg G$ 

$$Z \to \sqrt{\frac{L'}{C'}}$$

- Inductance per unit length: L'
- Capacitance per unit length: C'
- Resistance per unit length: R'
- Conductance per unit length:  $G' \approx 0$



$$I(x + dx) = I(x) - V(x)Y(x)$$

where

$$Y(x) = (G' + j\omega C')dx$$
$$\frac{\partial I}{\partial x} = \frac{I(x + dx) - I(x)}{dx} = -(G' + j\omega C')V(x)$$



$$V(x + dx) = V(x) - I(x)X(x)$$

#### where

$$X(x) = (R' + j\omega L')dx$$
$$\frac{\partial V}{\partial x} = \frac{V(x + dx) - V(x)}{dx} = -(R' + j\omega L')I(x)$$

$$\frac{\partial^2 V}{\partial x^2} - \gamma^2 V(x) = 0$$

$$\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')}$$
$$= \alpha + j\beta$$
$$\beta \approx \omega \sqrt{L'C'}$$

$$V(x) + V_1 e^{\gamma x} + V_2 e^{-\gamma x}$$

- Time dependence:  $V(x,t) + V_1 e^{\alpha x} e^{j(\omega t + \beta x)} + V_2 e^{-\alpha x} e^{j(\omega t - \beta x)}$
- Speed of wave propagation:

$$\omega t - \beta x = const.$$
$$\omega - \beta \frac{dx}{dt} = 0$$
$$\frac{dx}{dt} = v = \frac{\omega}{\beta} \approx \frac{1}{\sqrt{L'C'}}$$



Maxwell's equation:

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$
$$\oint_{S} \boldsymbol{E} \cdot d\boldsymbol{a} = \frac{Q}{\epsilon_0}$$
$$E(r) = \frac{Q}{2\pi\epsilon_0 l} \cdot \frac{1}{r}$$

$$V(r) = \int_{a}^{b} \mathbf{E} \cdot d\mathbf{r} = \frac{Q}{2\pi\epsilon_{0}l} \log \frac{b}{a}$$

The charge is determined by the capacitance:

$$Q = CV$$
$$C = \frac{2\pi\epsilon_0 l}{\log b/a}$$

If the space between the conductors was filled with a dielectric material then  $\epsilon_0 \rightarrow \epsilon = \epsilon_0 \epsilon_r$ 

Capacitance per unit length:

$$C' = \frac{2\pi\epsilon_0\epsilon_r}{\log b/a}$$

• Similarly, the inductance per unit length is

$$L' = \frac{\mu_0}{2\pi} \log \frac{b}{a}$$

• Characteristic impedance of a coaxial cable:

$$Z_{0} = \sqrt{\frac{L'}{C'}} = \frac{1}{2\pi} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{\log b/a}{\sqrt{\epsilon_{r}}}$$
$$= (59.97 \ \Omega) \frac{\log b/a}{\sqrt{\epsilon_{r}}}$$

• Speed of signal propagation:

$$v = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = c$$

• If a dielectric is used, then

$$v = \frac{c}{\sqrt{\epsilon_r}} < c$$

- A common dielectric material is polyethylene (P.E.) which has  $\epsilon_r = 2.25 \Rightarrow v \approx \frac{2}{3}c = 20 \text{ cm/ns}$
- Printed circuit boards use FR4/epoxy which has  $\epsilon_r \approx 4.2 - 4.5 \Rightarrow v \approx \frac{1}{2}c = 15 \text{ cm/ns}$

# Coaxial Cables 20 ¢/foot

| TRANSRADIO<br>PART NO.      | Q<br>98100    | Q<br>98101    | Q<br>98102     | Q<br>98103     | 0<br>98104      | Q<br>98105    | 0<br>98137     | Q<br>98139         | Q<br>98106    | Q<br>98107        | Q<br>98141        | 0<br>98111       | 0<br>98112                                                                                                     | Q<br>98113        | 0<br>98114        | Q<br>98115        | Q<br>98116        |
|-----------------------------|---------------|---------------|----------------|----------------|-----------------|---------------|----------------|--------------------|---------------|-------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| RG TYPE                     | 6A/U          | 11A/U         | 22B/U          | 58 C/U<br>Grey | 58 C/U<br>Black | 59B/U         | 59 B/U<br>Twin | 59 B/U<br>Armoured | 62 A/U        | 62 A/U<br>Outdoor | 62A/U<br>Armoured | 142B/U           | 174U                                                                                                           | 178B/U            | 1798/U            | 180B/U            | 188A/U            |
|                             |               |               |                |                |                 |               |                |                    |               |                   |                   |                  | Construction of the second |                   |                   |                   |                   |
| NOM. IMPEDANCE              | 75            | 75            | 93             | 50             | 50              | 75            | 75             | 75                 | 93            | 93                | 93                | 50               | 50                                                                                                             | 50                | 75                | 95                | 50                |
| NOM. CAPACITANCE            | 67 5          | 67 5          | 52             | 101            | 101             | 67 6          | 67.6           | 67.6               | 44.3          | 44.3              | 44.3              | 96.4             | 101 0                                                                                                          | 96.4              | 50.5              | 50.5              | 96.4              |
| ATTENUATION 10MHZ           | 30            | 1.8           | 28             | 5.0            | 50              | 3.5           | 3.5            | 3.5                | 2.9           | 2.9               | 2.9               | 5.0              | 10                                                                                                             | 14                | 8.5               | 6.0               | 12                |
| 50MHZ                       | 70            | 4.5           | 62             | 12             | 12              | 8.0           | 8.0            | 8.0                | 6.5           | 6.5               | 6.5               | 12 0             | 24                                                                                                             | 32                | 20                | 14                | 18                |
| 100MHZ                      | 10 0          | 6.5           | 90             | 16             | 16              | 12            | 12             | 12                 | 9.2           | 9.2               | 9.2               | 16               | 34                                                                                                             | 46                | 28                | 21                | 37.7              |
| 800MHZ                      | 28            | 22            | -              | 50             | 50              | 34            | 34             | 34                 | 26            | 26                | 26                | 48               | 130                                                                                                            | 150               | 94                | 70                | 90                |
| CONDUCTOR:<br>Material      | Cu W<br>SOLID | 1.C<br>7/0.40 | 2xCu<br>7/0.40 | Cu<br>19/0 18  | Cu<br>19/0 18   | Cu W<br>SOLID | Cu W<br>SOLID  | Cu W<br>SOLID      | Cu W<br>SOLID | Cu W<br>SOLID     | Cu W<br>SOLID     | Si.Cu.W<br>SOLID | Cu.W.<br>7/0.16                                                                                                | Si.Cu.W<br>7/0.10 | Si.Cu.W<br>7/0.10 | Si.Cu.W<br>7/0.10 | Si Cu W<br>7/0.17 |
| DIA.MM.                     | 0.7           | 1.2           | 1.2            | 0.9            | 0.9             | 0.6           | 0.6            | 0.6                | 0.64          | 0 64              | 0.64              | 0.99             | 0.48                                                                                                           | 0.305             | 0.305             | 0.305             | 0.50              |
| DIELETRIC:<br>Material      | P.E.          | PE.           | PE.            | P.E.           | PE              | P.E.          | P.E.           | P.E.               | PE + TH       | PE + TH           | PE+TH             | PTFE             | PE                                                                                                             | PTFE              | PTFE              | PTFE              | PTFE              |
| O/D(NOM.)                   | 4.6           | 7.2           | 7.3            | 3.0            | 3.0             | 3.7           | 3.7            | 3.7                | 3.7           | 3.7               | 3.7               | 3.0              | 1.5                                                                                                            | 0.86              | 1.6               | 2.6               | 15                |
| SCREEN: 1st<br>Material 2nd | SICu          | Cu            | TIC            | TiC            | TiC             | Cu            | Cu             | Cu                 | Cu            | Cu                | Cu                | Si Cu            | TiC                                                                                                            | Si.Cu             | Si.Cu.            | Si Cu             | Si Cu             |
|                             | SiCu          | -             | TiC            | -              | -               | -             | -              | -                  | -             | -                 | -                 | Si.Cu.           | -                                                                                                              | -                 | -                 | -                 | -                 |
| SHEATH:<br>Material         | PVC           | PVC           | PVC            | PVC            | PVC             | PVC           | PVC            | PVC                | PVC           | PE                | PVC               | FEP              | PVC                                                                                                            | FEP               | FEP               | FEP               | PTFE              |
| O/D(NOM.)                   | 8.4           | 10.3          | 10.3           | 49             | 49              | 6.2           | 6.2            | -                  | 6.2           | 6.2               | -                 | 4.9              | 2.54                                                                                                           | 1.9               | 2.54              | 3.7               | 2.8               |
| Weight:<br>Approx KG/KM     | 119           | 143           | 180            | 43             | 43              | 48            | 96             | -                  | 56            | 57                | -                 | 74               | 11.8                                                                                                           | 7.4               | 14.8              | 28.1              | 16.2              |
| MIN.<br>BENDING RADIUS      | 102           | 114           | 51             | 51             | 51              | 51            | -              | -                  | 51            | 116               | -                 | 51               | 25 4                                                                                                           | 25.4              | 25 4              | 50 8              | 25 4              |

- For typical coaxial cable, eg. RG-58
  - C' = 26.4 pF/foot = 86.6 pF/m $L' = 0.070 \mu\text{H/foot} = 0.230 \mu\text{H/m}$  $R' = 17 \Omega/\text{foot} = 0.056 \Omega/\text{m}$
- At what frequency does  $|\omega L'| \approx R'$ ?  $\omega = \frac{0.056 \ \Omega/m}{0.230 \ \mu H/m} \sim 250 \ kHz$
- At 1 MHz,  $\omega L'$  is four times larger than R'
- At 10 MHz, it is reasonable to ignore R'

• Recall that

$$\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')} = \alpha + j\beta$$

• At low frequencies, say 10 kHz,

$$\gamma \approx \sqrt{j\omega R'C'} = (5.5 \times 10^{-4} \text{ m}^{-1}) \frac{(1+j)}{\sqrt{2}}$$
  
 $\alpha = 3.89 \times 10^{-4} \text{ m}^{-1}$ 

• For example, when  $\ell = 100 \text{ m}$ ,  $A' = Ae^{-\alpha \ell}$ 

$$G = 20 \log_{10} \frac{A'}{A} = 20 \log_{10} e^{-\alpha \ell}$$
  
= 20 (-\alpha \ell) \log\_{10} e  
= 0.34 dB

• At medium frequencies, say 100 MHz,

$$\gamma = \sqrt{(j\omega L')(j\omega C')}$$
$$= j\omega \sqrt{L'C'}$$

- Does this mean that  $\alpha \to 0$  as  $\omega \to \infty$ ?
- Skin effect results in resistive losses
- At high frequencies, the electric and magnetic frequencies penetrate conductors with an exponential falloff:

$$E = E_0 e^{-x/\delta}$$
$$\delta = \sqrt{\frac{2}{\omega\mu_0\sigma}}$$

• At high frequencies, the resistance is mostly due to the skin effect:

$$R' \sim \frac{1}{p} \sqrt{\frac{\omega}{\sigma}}$$

where p is the perimeter of the conductor.

• Impedance,

$$Z(\omega) \sim \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$
$$\lim_{\omega \to \infty} Z(\omega) = \sqrt{\frac{L'}{C'}}$$
• However,  $\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')}$ 
$$\lim_{\omega \to \infty} \gamma(\omega) = j\omega \sqrt{L'C'} + \alpha(\omega)$$
$$\alpha(\omega) \approx \sqrt{\omega}$$

#### **Other Transmission Line Configurations**



• This is called "twisted pair" cable eg. CAT4/5 Ethernet cable



$$Z \approx \frac{87 \Omega}{\sqrt{1.41 + \epsilon_r}} \log\left(\frac{5.98 h}{t + 0.8 w}\right)$$
  
$$\epsilon_r \text{ is typically about 4.2-4.5}$$
  
"microstrip" transmission line

#### **Other Transmission Line Configurations**



**Embedded** microstrip

- When do we need to think of a conductor as a transmission line and not just a wire?
- Generally, when the wavelength is shorter than the length of the transmission line
- Example:

A signal with a fast rise-time of 200 ps:

$$\lambda = v \Delta t = \frac{c}{\sqrt{\epsilon_r}} \Delta t = 2.8 \text{ cm}$$

A slower signal with  $\Delta t \sim 1$  ns over 10 meters of cable:

$$\lambda = v \Delta t = 19 \text{ cm} \ll 10 \text{ m}$$



- Ideal voltage source:  $v(t) = V_0 e^{j\omega t}$
- Source impedance: Z<sub>S</sub>
- Transmission line impedance:  $Z_0$
- Load impedance:  $Z_L$

• The general solution to the differential equation in the transmission line:

$$I(x) = Ae^{\gamma x} + Be^{-\gamma x}$$

 Voltage and current in the transmission line are related by

$$V(x) = -\frac{1}{G' + j\omega C'} \frac{\partial I}{\partial x}$$
  
=  $-\frac{\gamma}{G' + j\omega C'} (Ae^{\gamma x} - Be^{-\gamma x})$   
=  $-Z_0 (Ae^{\gamma x} - Be^{-\gamma x})$ 

 The constants A and B must make the solution in the transmission line match the boundary conditions at the ends.

• At the source end, x = 0

$$V_0 - I(0)Z_S - V(0) = 0$$
  

$$I(0) = A + B$$
  

$$V(0) = -Z_0(A - B)$$
  

$$V_0 - Z_S(A + B) + Z_0(A - B) = 0$$

- At the load end,  $x = \ell$   $V(\ell) - I(\ell)Z_L = 0$  $-Z_0(Ae^{\gamma\ell} - Be^{-\gamma\ell}) - Z_L(Ae^{\gamma\ell} + Be^{-\gamma\ell}) = 0$
- Two equations in two unknowns...

$$A = \frac{V_0 \Gamma_L e^{-2\gamma \ell}}{(Z_S + Z_0)(1 - \Gamma_S \Gamma_L e^{-2\gamma \ell})}$$
$$B = \frac{V_0 \Gamma_L e^{-2\gamma \ell}}{(Z_S + Z_0)(1 - \Gamma_S \Gamma_L e^{-2\gamma \ell})}$$

$$\Gamma_{S} = \frac{Z_{S} - Z_{0}}{Z_{S} + Z_{0}}$$
$$\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} - Z_{0}}$$

 If V<sub>0</sub> produces a wave travelling to the right, the current induced by this wave in the transmission line is

$$I_0 = \frac{V_0}{Z_0 + Z_S}$$

- This wave propagates down to the end of the transmission line.
- At the far end,

$$I_0' = \frac{V_0}{Z_0 + Z_S} e^{-\gamma \ell}$$

- Some energy is dissipated in the load  $Z_L$  but some is reflected back towards the source.
- Reflected component:

$$I_1' = I_0' \Gamma_L = \frac{V_0}{Z_0 + Z_S} \Gamma_L e^{-\gamma \ell}$$

- The reflected wave propagates back towards the source.
- When it arrives,

$$I_1 = I_1' e^{-\gamma \ell} = \frac{V_0}{Z_0 + Z_S} \Gamma_L e^{-2\gamma \ell}$$

 When the reflected wave arrives back at the source, some energy is dissipated in the source impedance, but some is reflected back towards the load.

$$I_2 = I_1 \Gamma_S = \frac{V_0}{Z_0 + Z_S} \Gamma_S \Gamma_L e^{-2\gamma \ell}$$

• This process continues, ad infinitum

Adding up all the components gives:
 – Current flowing in the +x direction:

$$I_{+}(x) = \frac{V_0}{Z_0 + Z_S} \frac{e^{-\gamma x}}{1 - \Gamma_S \Gamma_L e^{-2\gamma \ell}}$$

– Current flowing in the –x direction:

$$I_{-}(x) = \frac{V_0}{Z_0 + Z_S} \frac{\Gamma_L e^{-2\gamma \ell} e^{\gamma x}}{1 - \Gamma_S \Gamma_L e^{-2\gamma \ell}}$$

- If  $Z_L = Z_0$  then no energy is reflected from the load.
- If  $Z_S = Z_0$  then no energy is reflected from the source.