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Transmission Lines

• Total equivalent impedance:
𝑍 = 𝑅 + 𝑗𝜔𝐿 + 𝐺 + 𝑗𝜔𝐶 −1

= 𝑥 +
1

𝑦
𝑥 = 𝑅 + 𝑗𝜔𝐿
𝑦 = 𝐺 + 𝑗𝜔𝐶

𝐿

𝑅′ = 1/𝐺

𝐶

𝑅

𝒊(𝒕)



Transmission Lines

• Suppose we had an infinite chain of these lumped 
circuit elements.  

• If we add one more lump, the impedance should not 
change:

𝑍 = 𝑅 + 𝑗𝜔𝐿 + 𝐺 + 𝑗𝜔𝐶 +
1

𝑍

−1

= 𝑥 + 𝑦 +
1

𝑍

−1

𝑍 = 𝑥 +
𝑥2

4
+
𝑥

𝑦



Transmission Lines

• Now suppose that each lump was split into 𝑛 smaller 
lumps

𝑅 → 𝑅/𝑛
𝐿 → 𝐿/𝑛
𝐺 → 𝐺/𝑛
𝐶 → 𝐶/𝑛

𝑍 =
𝑥

𝑛
+

𝑥2

4𝑛2
+
𝑥/𝑛

𝑦/𝑛

lim
𝑛→∞

𝑍 =
𝑥

𝑦
=

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶

𝑥 → 𝑥/𝑛

𝑦 → 𝑦/𝑛



Transmission Lines

• At high frequencies, 𝜔𝐿 ≫ 𝑅 and 𝜔𝐶 ≫ 𝐺

𝑍 →
𝐿′

𝐶′

– Inductance per unit length: 𝐿′

– Capacitance per unit length: 𝐶′

– Resistance per unit length: 𝑅′

– Conductance per unit length: 𝐺′ ≈ 0



Transmission Lines

𝐼 𝑥 + 𝑑𝑥 = 𝐼 𝑥 − 𝑉 𝑥 𝑌 𝑥

where
𝑌 𝑥 = 𝐺′ + 𝑗𝜔𝐶′ 𝑑𝑥

𝜕𝐼

𝜕𝑥
=
𝐼 𝑥 + 𝑑𝑥 − 𝐼(𝑥)

𝑑𝑥
= − 𝐺′ + 𝑗𝜔𝐶′ 𝑉(𝑥)

𝐿′𝑑𝑥 𝐺′𝑑𝑥 𝐶′𝑑𝑥𝑅′𝑑𝑥

𝒊(𝒕)

𝑉(𝑥) 𝑉(𝑥 + 𝑑𝑥)

𝑥 + 𝑑𝑥𝑥



Transmission Lines

𝑉 𝑥 + 𝑑𝑥 = 𝑉 𝑥 − 𝐼 𝑥 𝑋 𝑥

where
𝑋 𝑥 = 𝑅′ + 𝑗𝜔𝐿′ 𝑑𝑥

𝜕𝑉

𝜕𝑥
=
𝑉 𝑥 + 𝑑𝑥 − 𝑉(𝑥)

𝑑𝑥
= − 𝑅′ + 𝑗𝜔𝐿′ 𝐼(𝑥)

𝐿′𝑑𝑥 𝐺′𝑑𝑥 𝐶′𝑑𝑥𝑅′𝑑𝑥

𝒊(𝒕)

𝑉(𝑥) 𝑉(𝑥 + 𝑑𝑥)

𝑥 + 𝑑𝑥𝑥



Transmission Lines

𝜕2𝑉

𝜕𝑥2
− 𝛾2𝑉 𝑥 = 0

𝛾 = 𝑅′ + 𝑗𝜔𝐿′ 𝐺′ + 𝑗𝜔𝐶′

= 𝛼 + 𝑗𝛽

𝛽 ≈ 𝜔 𝐿′𝐶′

𝑉 𝑥 + 𝑉1𝑒
𝛾𝑥 + 𝑉2𝑒

−𝛾𝑥



Transmission Lines

• Time dependence:

𝑉 𝑥, 𝑡 + 𝑉1𝑒
𝛼𝑥𝑒𝑗 𝜔𝑡+𝛽𝑥 + 𝑉2𝑒

−𝛼𝑥𝑒𝑗 𝜔𝑡−𝛽𝑥

• Speed of wave propagation:
𝜔𝑡 − 𝛽𝑥 = 𝑐𝑜𝑛𝑠𝑡.

𝜔 − 𝛽
𝑑𝑥

𝑑𝑡
= 0

𝑑𝑥

𝑑𝑡
= 𝑣 =

𝜔

𝛽
≈

1

𝐿′𝐶′



What are L’ and C’ in practice?

Maxwell’s equation:

𝛻 ∙ 𝑬 =
𝜌

𝜖0

ර
𝑆

𝑬 ∙ 𝑑𝒂 =
𝑄

𝜖0

𝐸 𝑟 =
𝑄

2𝜋𝜖0𝑙
∙
1

𝑟



What are L’ and C’ in practice?

𝑉 𝑟 = න
𝑎

𝑏

𝑬 ∙ 𝑑𝒓 =
𝑄

2𝜋𝜖0𝑙
log

𝑏

𝑎

The charge is determined by the capacitance:
𝑄 = 𝐶𝑉

𝐶 =
2𝜋𝜖0𝑙

log 𝑏/𝑎

If the space between the conductors was filled with a 
dielectric material then 𝜖0 → 𝜖 = 𝜖0𝜖𝑟
Capacitance per unit length:

𝐶′ =
2𝜋𝜖0𝜖𝑟
log 𝑏/𝑎



• Similarly, the inductance per unit length is

𝐿′ =
𝜇0
2𝜋

log
𝑏

𝑎
• Characteristic impedance of a coaxial cable:

𝑍0 =
𝐿′

𝐶′
=

1

2𝜋

𝜇0
𝜖0

log 𝑏/𝑎

𝜖𝑟

= 59.97 Ω
log 𝑏/𝑎

𝜖𝑟

What are L’ and C’ in practice?



• Speed of signal propagation:

𝑣 =
1

𝐿′𝐶′
=

1

𝜖0𝜇0
= 𝑐

• If a dielectric is used, then

𝑣 =
𝑐

𝜖𝑟
< 𝑐

• A common dielectric material is polyethylene (P.E.) 

which has 𝜖𝑟 = 2.25 𝑣 ≈
2

3
𝑐 = 20 cm/ns

• Printed circuit boards use FR4/epoxy which has     

𝜖𝑟 ≈ 4.2 − 4.5 𝑣 ≈
1

2
𝑐 = 15 cm/ns

What are L’ and C’ in practice?



Coaxial Cables



Coaxial Cable Properties

• For typical coaxial cable, eg. RG-58
𝐶′ = 26.4 ΤpF foot = 86.6 pF/m

𝐿′ = 0.070 ΤμH foot = 0.230 μH/m
𝑅′ = 17 ΤΩ foot = 0.056 Ω/m

• At what frequency does |𝜔𝐿′| ≈ 𝑅′?

𝜔 =
0.056 Ω/m

0.230 μH/m
~ 250 kHz

• At 1 MHz, 𝜔𝐿′ is four times larger than 𝑅′

• At 10 MHz, it is reasonable to ignore 𝑅′



Coaxial Cable Properties
• Recall that

𝛾 = 𝑅′ + 𝑗𝜔𝐿′ 𝐺′ + 𝑗𝜔𝐶′ = 𝛼 + 𝑗𝛽
• At low frequencies, say 10 kHz,

𝛾 ≈ 𝑗𝜔𝑅′𝐶′ = 5.5 × 10−4 m−1
1 + j

2
𝛼 = 3.89 × 10−4 m−1

• For example, when ℓ = 100 m, 𝐴′ = 𝐴𝑒−𝛼ℓ

𝐺 = 20 log10
𝐴′

𝐴
= 20 log10 𝑒

−𝛼ℓ

= 20 −𝛼ℓ log10𝑒
= 0.34 dB



Coaxial Cable Properties

• At medium frequencies, say 100 MHz,

𝛾 = 𝑗𝜔𝐿′ 𝑗𝜔𝐶′

= 𝑗𝜔 𝐿′𝐶′
• Does this mean that 𝛼 → 0 as 𝜔 → ∞?
• Skin effect results in resistive losses
• At high frequencies, the electric and magnetic 

frequencies penetrate conductors with an exponential 
falloff:

𝐸 = 𝐸0𝑒
−𝑥/𝛿

𝛿 =
2

𝜔𝜇0𝜎



Coaxial Cable Properties

• At high frequencies, the resistance is mostly due to the skin effect:

𝑅′~
1

𝑝

𝜔

𝜎
where 𝑝 is the perimeter of the conductor.
• Impedance,

𝑍(𝜔)~
𝑅′ + 𝑗𝜔𝐿′

𝐺′ + 𝑗𝜔𝐶′

lim
𝜔→∞

𝑍 𝜔 =
𝐿′

𝐶′

• However, 𝛾 = 𝑅′ + 𝑗𝜔𝐿′ 𝐺′ + 𝑗𝜔𝐶′

lim
𝜔→∞

𝛾 𝜔 = 𝑗𝜔 𝐿′𝐶′ + 𝛼 𝜔

𝛼 𝜔 ≈ 𝜔



Other Transmission Line Configurations

𝑠𝑑
𝜖𝑟

𝑍 ≈
120 Ω

𝜖𝑟
log

2𝑠

𝑑

• This is called “twisted pair” cable
eg. CAT4/5 Ethernet cable



Other Transmission Line Configurations
𝑤

𝑡
ℎ

𝜖𝑟

𝑍 ≈
87 Ω

1.41 + 𝜖𝑟
log

5.98 ℎ

𝑡 + 0.8 𝑤

𝜖𝑟 is typically about 4.2-4.5
“microstrip” transmission line



Other Transmission Line Configurations

𝑤

𝑡
ℎ

𝜖𝑟

𝑍 ≈
60 Ω

𝜖𝑟
log 1.9

2ℎ + 𝑡

0.8 𝑤 + 𝑡

Embedded microstrip



Transmission Lines

• When do we need to think of a conductor as a 
transmission line and not just a wire?

• Generally, when the wavelength is shorter than 
the length of the transmission line

• Example:
A signal with a fast rise-time of 200 ps:

𝜆 = 𝑣 Δ𝑡 =
𝑐

𝜖𝑟
Δ𝑡 = 2.8 cm

A slower signal with Δ𝑡 ~ 1 ns over 10 meters 
of cable:

𝜆 = 𝑣 Δ𝑡 = 19 cm ≪ 10 m



Transmission Lines in Circuits

• Ideal voltage source: 𝑣 𝑡 = 𝑉0𝑒
𝑗𝜔𝑡

• Source impedance: 𝑍𝑆
• Transmission line impedance: 𝑍0
• Load impedance: 𝑍𝐿

𝑣(𝑡)

+

-

𝑍𝑆

𝑍0 𝑍𝐿

ℓ



Transmission Lines in Circuits
• The general solution to the differential equation in the 

transmission line:
𝐼 𝑥 = 𝐴𝑒𝛾𝑥 + 𝐵𝑒−𝛾𝑥

• Voltage and current in the transmission line are related 
by

𝑉 𝑥 = −
1

𝐺′ + 𝑗𝜔𝐶′
𝜕𝐼

𝜕𝑥

= −
𝛾

𝐺′ + 𝑗𝜔𝐶′
𝐴𝑒𝛾𝑥 − 𝐵𝑒−𝛾𝑥

= −𝑍0 𝐴𝑒𝛾𝑥 − 𝐵𝑒−𝛾𝑥

• The constants A and B must make the solution in the 
transmission line match the boundary conditions at the 
ends.



Transmission Lines in Circuits
• At the source end, 𝑥 = 0

𝑉0 − 𝐼 0 𝑍𝑆 − 𝑉 0 = 0
𝐼 0 = 𝐴 + 𝐵

𝑉 0 = −𝑍0 𝐴 − 𝐵
𝑉0 − 𝑍𝑆 𝐴 + 𝐵 + 𝑍0 𝐴 − 𝐵 = 0

• At the load end, 𝑥 = ℓ
𝑉 ℓ − 𝐼 ℓ 𝑍𝐿 = 0

−𝑍0 𝐴𝑒𝛾ℓ − 𝐵𝑒−𝛾ℓ − 𝑍𝐿 𝐴𝑒𝛾ℓ + 𝐵𝑒−𝛾ℓ = 0

• Two equations in two unknowns…



Transmission Lines in Circuits

𝐴 =
𝑉0Γ𝐿𝑒

−2𝛾ℓ

𝑍𝑆 + 𝑍0 1 − Γ𝑆Γ𝐿𝑒
−2𝛾ℓ

𝐵 =
𝑉0

𝑍𝑆 + 𝑍0 1 − Γ𝑆Γ𝐿𝑒
−2𝛾ℓ

Γ𝑆 =
𝑍𝑆 − 𝑍0
𝑍𝑆 + 𝑍0

Γ𝐿 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

reflection 
coefficients



Interpretation

• If 𝑉0 produces a wave travelling to the right, the 
current induced by this wave in the transmission 
line is

𝐼0 =
𝑉0

𝑍0 + 𝑍𝑆
• This wave propagates down to the end of the 

transmission line.

• At the far end,

𝐼0
′ =

𝑉0
𝑍0 + 𝑍𝑆

𝑒−𝛾ℓ



Interpretation

• Some energy is dissipated in the load 𝑍𝐿 but 
some is reflected back towards the source.

• Reflected component:

𝐼1
′ = 𝐼0

′Γ𝐿 =
𝑉0

𝑍0 + 𝑍𝑆
Γ𝐿𝑒

−𝛾ℓ

• The reflected wave propagates back towards the 
source.

• When it arrives,

𝐼1 = 𝐼1
′𝑒−𝛾ℓ =

𝑉0
𝑍0 + 𝑍𝑆

Γ𝐿𝑒
−2𝛾ℓ



Interpretation

• When the reflected wave arrives back at the 
source, some energy is dissipated in the 
source impedance, but some is reflected back 
towards the load.

𝐼2 = 𝐼1Γ𝑆 =
𝑉0

𝑍0 + 𝑍𝑆
Γ𝑆Γ𝐿𝑒

−2𝛾ℓ

• This process continues, ad infinitum



Interpretation

• Adding up all the components gives:
– Current flowing in the +x direction:

𝐼+(𝑥) =
𝑉0

𝑍0 + 𝑍𝑆

𝑒−𝛾𝑥

1 − Γ𝑆Γ𝐿𝑒
−2𝛾ℓ

– Current flowing in the –x direction:

𝐼− 𝑥 =
𝑉0

𝑍0 + 𝑍𝑆

Γ𝐿𝑒
−2𝛾ℓ 𝑒𝛾𝑥

1 − Γ𝑆Γ𝐿𝑒
−2𝛾ℓ

• If 𝑍𝐿 = 𝑍0 then no energy is reflected from the 
load.

• If 𝑍𝑆 = 𝑍0 then no energy is reflected from the 
source.


