

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

AC Frequency Analysis \boldsymbol{K} $v(t) - i(t)R - L\frac{di}{dt}$ $V - IR - jI\omega L = 0$ + i(t)v(t) $I = \frac{V}{R + j\omega L}$

- Magnitude of current: $|I| = \frac{|V|}{\sqrt{R^2 + \omega^2 L^2}}$
- Phase with respect to V: $\tan \psi = -\frac{\omega L}{R}$

AC Frequency Analysis

• Limiting behavior:

– Small ω : $\omega L \ll R$

$$I \to V/R \qquad \psi \to 0$$

– Large $\omega: \omega L \gg R$

$$V \to V/\omega L \qquad \psi \to -\pi/2$$

• The circuit acts as a filter that prefers to pass the low-frequencies ($\omega \ll R/L$)

Voltage gain: $A = \frac{|V_{out}|}{|V_{in}|} = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$ At low frequencies, $A \to 1$ At high frequencies, $A = R/\omega L$

Frequency Response

- Gain is often expressed in decibels (db): $G = 20 \log_{10} A$
- For the low-pass filter:

$$G = 20 \log_{10} \left(\frac{R}{\sqrt{R^2 + \omega^2 L^2}} \right)$$

- At low frequencies, $G \rightarrow 0$
- At high frequencies,

$$G \rightarrow 20 \log_{10} \left(\frac{R}{L}\right) - 20 \log_{10} \omega$$

Frequency Response

- Where does $G(\omega)$ start to fall off?
- One useful definition is to define ω_0 to be the point where $A = 1/\sqrt{2}$.
- In this case,

$$G = 20 \log_{10} 1/\sqrt{2} = -3.0103 \approx -3 \text{ db}$$

 $\omega_0 = R/L$

Other Filter Configurations

Other Filter Configurations

- At high frequencies, $\omega^2 L^2 \gg R^2$, $A \rightarrow 1$
- At low frequencies, $A \rightarrow \omega L/R$
- This is a high-pass filter: the inductor "shorts out" low frequency components.

Frequency Response

$$G = 20 \log_{10} 1/\sqrt{2} = -3.0103 \approx -3 \text{ db}$$

 $\omega_0 = R/L$

Fourier Analysis

- What if a voltage source has two frequency components? $v(t) = V_{\omega_1}e^{j\omega_1 t} + V_{\omega_2}e^{j\omega_2 t}$
- Then we expect that

$$i(t) = I_{\omega_1} e^{j\omega_1 t} + I_{\omega_2} e^{j\omega_2 t}$$

where

$$I_{\omega_1} = Z_{\omega_1}^{-1} V_{\omega_1}$$
$$I_{\omega_2} = Z_{\omega_2}^{-1} V_{\omega_2}$$

• In general, because the system of equations is linear,

$$i(t) = \sum_{n} Z_{\omega_n}^{-1} V_{\omega_n} e^{j\omega_n t}$$

Now we can calculate the response due to an arbitrary periodic voltage source.

Fourier Analysis

• If f(t) is periodic with period T, that is, f(t+T) = f(t)

then f(t) can be expressed:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

• Fourier coefficients:

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt$$
$$\omega = \frac{2\pi}{T}$$

Fourier Analysis

• Or, we can write,

$$f(t) = \sum_{n=0}^{\infty} c_n e^{j\omega t}$$

where

$$c_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega t} dt$$

• Then,

$$i(t) = \sum_{n=0}^{\infty} d_n e^{jn\omega t}$$

where

$$d_n = Z_{n\omega}^{-1} c_n$$

• In this case,
$$a_0 = 0$$

• In fact, all $a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt = 0$
 $b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt$
 $= \begin{cases} \frac{4}{n\pi} & \text{when } n \text{ is odd} \\ 0 & \text{when } n \text{ is even} \end{cases}$

Low-Pass Filter

Suppose a square-wave signal goes through a low-pass filter:

Low-Pass Filter

$$V_{out}(\omega)| = |V_{\omega}| \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$$
$$\tan \psi_{\omega} = -\frac{\omega L}{R}$$

• So, if

$$v(t) = \sum_{n=0}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

• Then,

$$v_{out}(t) = \sum_{n=0}^{\infty} \frac{b_n R}{\sqrt{R^2 + \left(\frac{2\pi n}{T}\right)^2 L^2}} \sin\left(\frac{2\pi nt}{T} + \frac{\psi_{2\pi n}}{T}\right)$$

- Two effects:
 - Higher frequencies are attenuated

~~

- Higher frequencies are phase shifted

Low-Pass Filter

- Suppose that $T = 4 \mu s$ (f = 250 kHz)
- Recall that $\omega_{-3 db} = R/L = 2\pi f_{-3 db}$
- If $f_{-3 db} = 1 MHz$ then $R/L = 6.28 \times 10^6 s^{-1}$
- Suppose $L = 10 \ \mu H$ and $R = 63 \ \Omega$

n	A_n	ϕ_n
1	0.97	-14 °
3	0.80	-36 °
5	0.63	-51 °
7	0.50	-60 °
9	0.41	-66 °

Fourier Analysis Example

Fourier Analysis Example

Fourier Analysis Example

Analysis of Low-Pass Filter using SPICE

