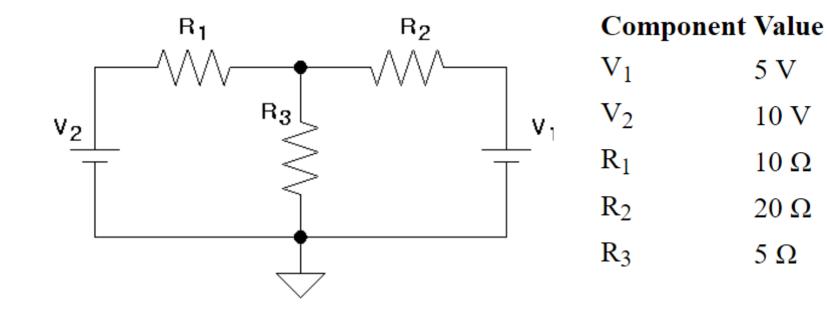


Physics 53600 Electronics Techniques for Research

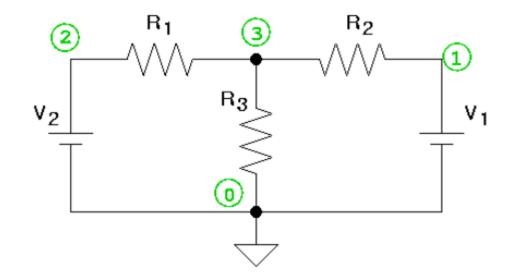
Spring 2020 Semester

Prof. Matthew Jones


Simulating Circuits using SPICE

- After the invention of planar integrated circuits, analog designs became increasingly complex
- The time required to fabricate a design became much longer
- It was no longer possible to adjust component values to optimize circuit performance
- There was a need to accurately model analog electronic circuits in the design process

SPICE


- Simulation Program with Integrated Circuit Emphasis
 - Initial concept developed in the 1960's
 - SPICE 1 released into public domain May 1972
 - SPICE 2 released in 1975
 - SPICE 3 released in March 1985
 - SPICE 3f.5 released in 1993
- Commercial versions
 - PSPICE (Cadence Design Systems)
 - HSPICE (Synopsys)
- Free spinoffs:
 - ADICE (Analog Devices)
 - − LTspice (Liner Technologies → Analog Devices)
 - A few others

- SPICE performs numerical simulation of circuits
 - All components must have numerical values

- Simulation of the circuit requires translating the schematic into a representation that can be interpreted by SPICE.
- This representation is called the *netlist*
- First, assign labels to each node in the circuit
- Then specify which components are connected to the nodes

- It is necessary to assign a ground node "0" in each disconnected part of the circuit
- Other nodes can have arbitrary labels

- The netlist consists of a list of all components and the nodes to which they are connected
 - Resistors: Rxxxxx N1 N2 <VALUE>
 - Voltage sources: VXXXXX N+ N- DC <VALUE>
- This is the complete netlist:

- Some minor additions are needed
 - A title for the circuit
 - What type of numerical analysis to perform?
 - The end

```
PHYSICS 536 EXAMPLE CIRCUIT

V1 1 0 DC 5V

V2 2 0 DC 10V

R1 2 3 10

R2 1 3 20

R3 3 0 5

.OP

.END DC operating point analysis
```

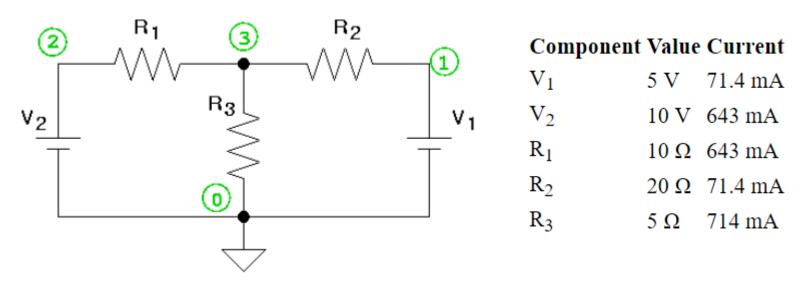
SPICE Output

Operating point information:

	Node	Voltage				
	V(3) V(2)	1.00000	1429e+00 0000e+01 0000e+00		Voltages of ead (electric poten	
	Source	Current				
			-7.14286e -6.42857e		Current throug	
Resisto model	or model	s (Simpl R	e linear r	esistor)		
narr t t	rsh row tcl tc2 efw	0 0 0 1e-05			Resistor models (with temperat	
Resisto device model resistar	nce i	r3 R 5 0.714	r resistor r2 R 20 0.0714 0.102	r1 R 10 0.643	Current and po	
device	dc nag i -	v2 10		irce	Current and po	
CPU time	e since	last cal	l: 0.006 s	seconds.		

Voltages of each node (electric potential with respect to ground)

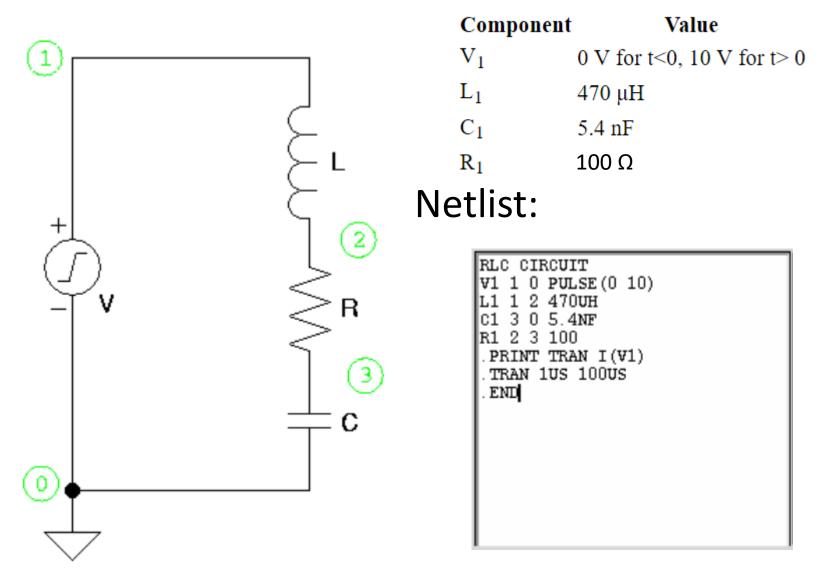
Current through each voltage source


Resistor models (with temperature coefficients)

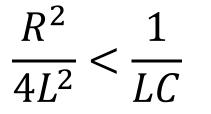
Current and power for each resistor

Current and power for each voltage source

Total CPU time: 0.006 seconds.


SPICE Output

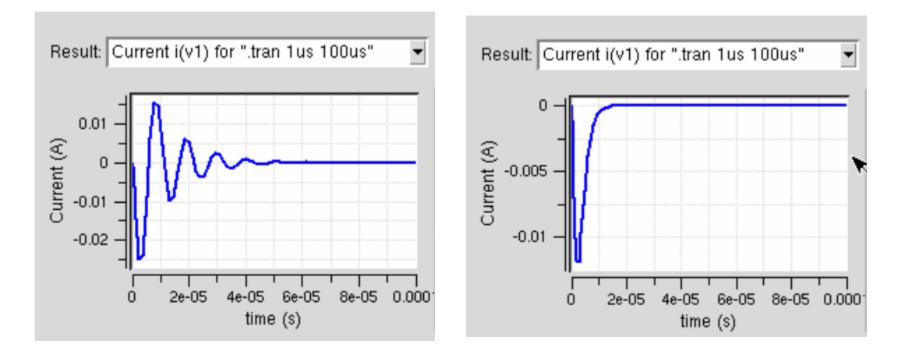
- All the current flowing from V1 must pass through R2
- All the current flowing from V2 must flow through R1
- Current flowing through R3 must be the sum of these currents
- SPICE reports the current flowing *into* the positive node of voltage sources.


Source	Current	
v1#bran v2#bran		-7.14286e-02 -6.42857e-01

Transient Analysis

Transient Analysis

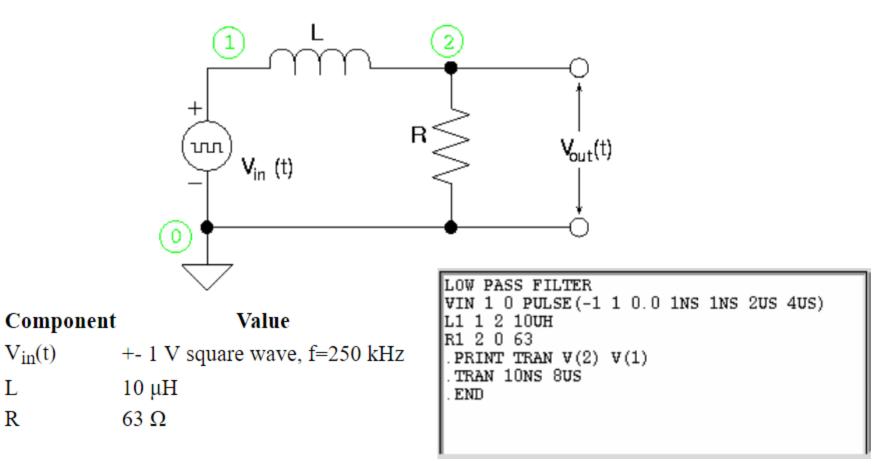
• What range of resistances will produce oscillations?



- Expect oscillations for $R < 590 \ \Omega$
- Oscillation frequency is $f = \frac{\omega}{2\pi} = \sqrt{\frac{1}{LC} \frac{R^2}{4L^2}}$
- When $R = 100 \Omega$, f = 101 kHz

Transient Response

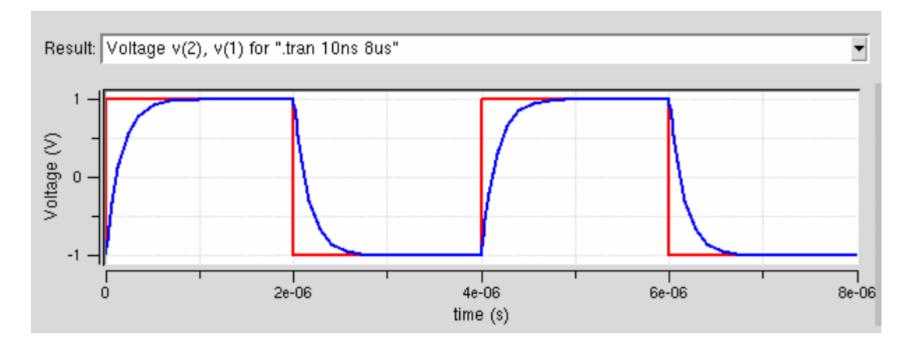
 $R = 100 \Omega$


 $R = 600 \Omega$

Remember that the current is measured flowing INTO the positive node of the voltage source

A Low-Pass Filter Example

- Inductors pass low frequencies (just a wire for DC)
- Capacitors pass high frequencies

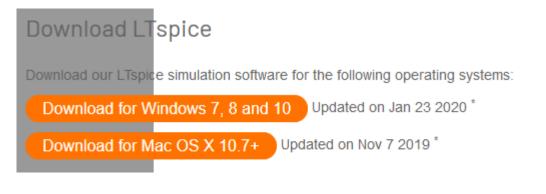

A Low-Pass Filter Example

Voltage source defined using

VIN <N+> <N-> PULSE(V1 V2 TD TR TF PW PER)

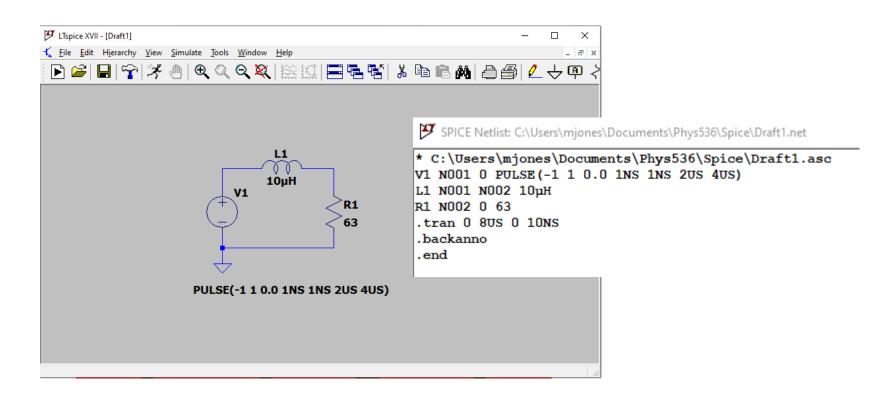
- v1 initial voltage (volts)
- v2 pulsed voltage (volts)
- TD delay time (seconds)
- TR rise time (seconds)
- TF fall time (seconds)
- PW pulse width (seconds)
- PER period of waveform (seconds)

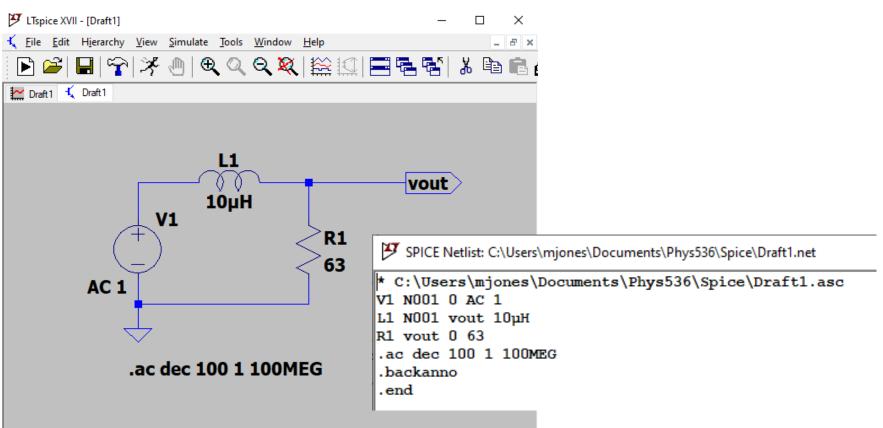
A Low-Pass Filter Example



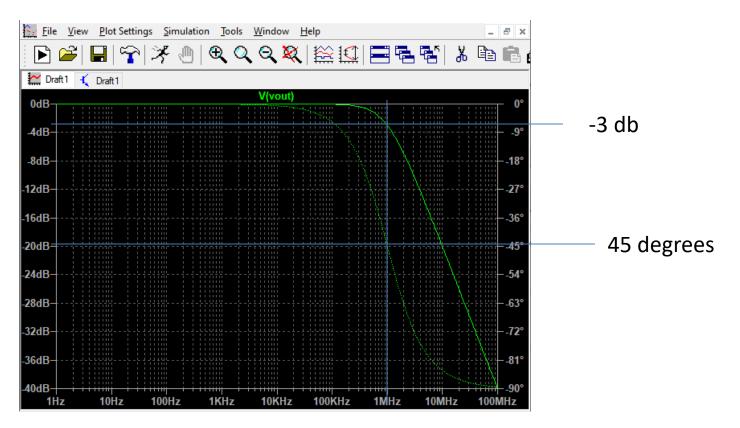
• The inductor blocks the high frequency components and rounds off the sharp corners.

- LTspice was developed by Linear Technologies and was used in-house for IC and power supply circuit design
- In addition to circuit simulation, it provides a graphical schematic entry interface
- In July 2016, Analog Devices acquired Linear Technologies (amicably) for \$14.8 billion in cash and stock
- <u>https://www.analog.com/en/design-</u> <u>center/design-tools-and-calculators/ltspice-</u> <u>simulator.html</u>


• Please locate and install LTspice

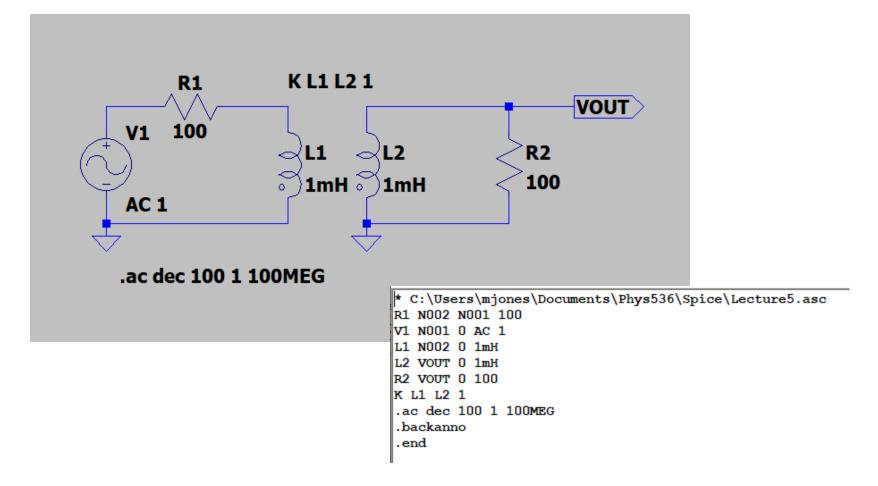

It should be installed on the computers in the lab.

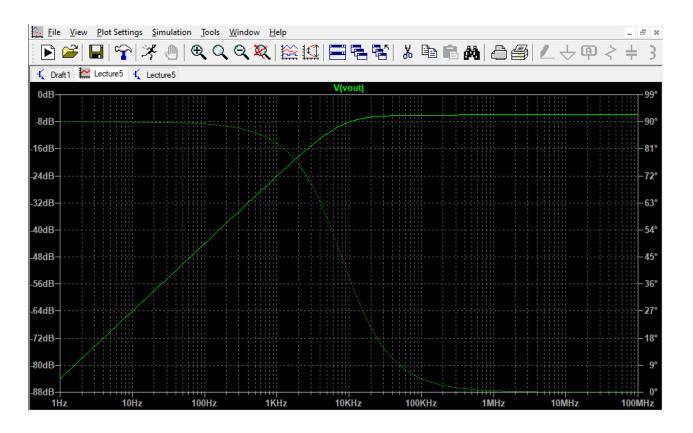
There is lots of documentation and tutorial videos. Just ask señor google...


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	🍠 LTspice XVII - [Draft1]			– 🗆 X						
V(n001) V(n002) 1.6V	File View Plot Settings Simulation Tool	<u>W</u> indow <u>H</u> elp		_ & ×						
V(n001) V(n002) 1.6V	🖻 🐸 🔚 🖙 🛪 🕘 🔍 🤇	२ ९ 💐 🔛 🛄	- E E X 🖻 🖻 🗰	$ \bigcirc { \ \ \square } \land { \ \ \square } \land { \ \ \square } \land$						
1.6V 1.2V 0.8V 0.4V 0.4V 0.4V 0.4V 1.2V	🔨 Draft1 🔛 Draft1									
1.6V 1.2V 0.8V 0.4V 0.4V 0.4V 0.0V 0.4V 1.2V 1.2V 1.2V 1.2V	2.0V		V(n00)	2)						
1.2V 0.8V 0.4V 0.4V 0.0V 0.0V 0.4V										
0.8V 0.4V 0.4V 0.0V -0.4V -0.4V -1.2V -1.6V										
0.0V- -0.4V- -0.8V- -1.2V- -1.6V-										
-0.4V -0.8V -1.2V -1.6V	0.4V									
-0.8V	0.0V									
-1.2V	-0.4V			\						
-1.6V	-0.8V-									
	-1.2V									
2 0V	-1.6V									
	-2.0V		4 9 m 5 0 m	6.4µs 7.2µs 8.0µs						

Frequency Analysis

The AC analysis will scan the frequency of a voltage source and plot the ratio voltages and the relative phase


Frequency Analysis


Expected cutoff frequency, $f_{-3 \ db} = \frac{R}{2\pi L} = 1 \ MHz$

Transformers

• Transformers are described by individual inductors with a specified coupling

Transformers

Notes:

- Make sure to define ground on BOTH sides of the transformer
- Alternatively connect both sides by a LARGE resistor