

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

Inductors

- Just like energy can be stored in an electric field (ie, a capacitor) it can also be stored in a magnetic field.
- Charge carriers lose energy when they increase the magnetic field and they gain energy from the magnetic field when it decays.
- Faraday's law of induction:

$$\oint_{C} \boldsymbol{E} \cdot d\boldsymbol{l} = -\frac{d\phi_{m}}{dt}$$

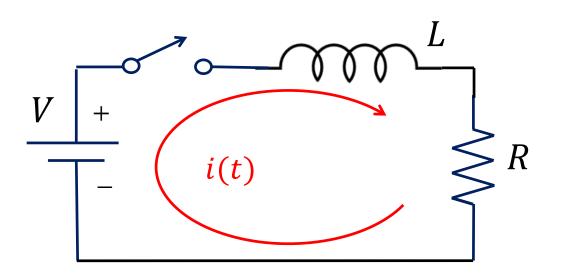
Inductors

• Consider a solenoid: $B = \mu_0 n I$

– Turns per unit length: $n = N/\ell$

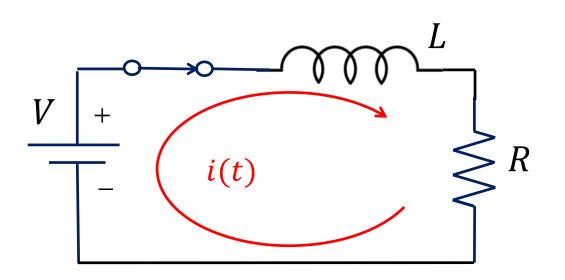
• Magnetic flux: $\phi_m = BA$

а


• Potential difference:

$$\Delta V = -\frac{\mu_0 N^2 A}{\ell} \frac{dI}{dt}$$

 $V_b - V_a = -L\frac{dI}{dt}$


b

• In general,

$$V - L\frac{di}{dt} - iR = 0$$

Initial condition: i(0) = 0

$$V - L\frac{di}{dt} - iR = 0$$
$$\frac{di}{dt} + \frac{R}{L}i = \frac{V}{L}$$

• Homogeneous equation:

$$\frac{di}{dt} + \frac{R}{L}i = 0$$

• Solution to the homogeneous equation: $i(t) = L e^{-(R/L)t}$

$$i(t) = I_0 e^{-(R/L)}$$

• Particular solution:

$$i_0 = \frac{V}{R}$$

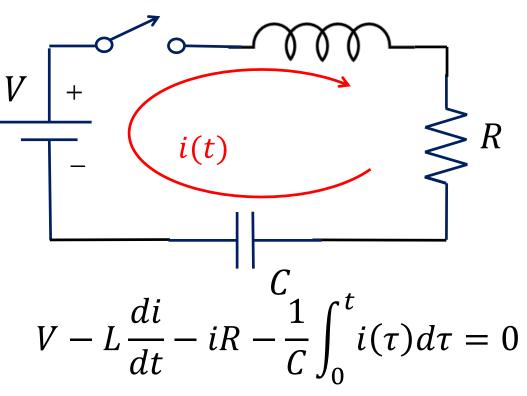
• Complete solution:

$$i(t) = I_0 e^{-(R/L)t} + \frac{V}{R}$$

• Complete solution:

$$i(t) = I_0 e^{-(R/L)t} + \frac{V}{R}$$

• Initial condition:


$$i(0) = I_0 + \frac{V}{R} = 0$$
$$I_0 = -\frac{V}{R}$$

• Solution:

$$i(t) = \frac{V}{R} \left(1 - e^{-(R/L)t} \right)$$

Inductors in Circuits

- Initially, an inductor acts like an open circuit
 - No current is flowing through the inductor
 - All the electrical potential energy is used up in creating the magnetic field
- As $t \to \infty$, an inductor acts like a wire
 - No potential difference across the inductor
 - The magnetic field is constant ($d\phi_m/dt = 0$)

Differentiate...

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

• Let $\omega_0^2 = 1/LC$ and $\gamma = R/2L$
 $\frac{d^2i}{dt^2} + 2\gamma \frac{di}{dt} + \omega_0^2 i = 0$

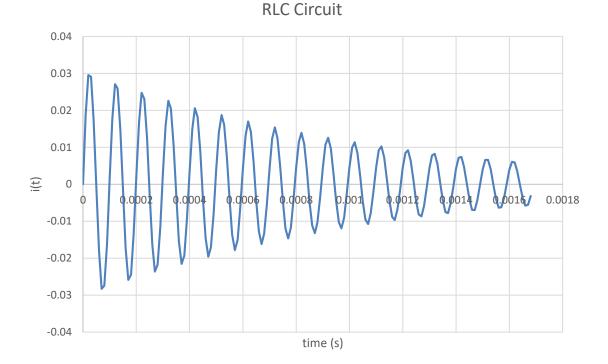
- Suppose i(t) is of the form $i(t) = c e^{\alpha t}$
- Then $\alpha^2 + 2\gamma\alpha + \omega_0^2 = 0$

$$\alpha = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$$

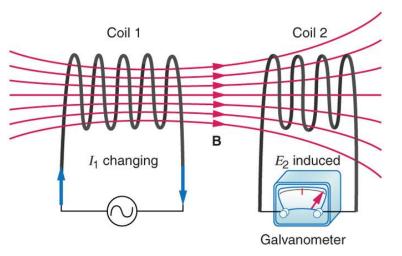
- If $\gamma > \omega_0$ then the roots are real: $i(t) = Ae^{-\gamma_+ t} + Be^{-\gamma_- t}$ $\gamma_{\pm} = \gamma \pm \sqrt{\gamma^2 - \omega_0^2}$
- If $\gamma < \omega_0$ then the roots are complex: $i(t) = Ae^{-\gamma t} \sin \omega t + Be^{-\gamma t} \cos \omega t$ $\omega = \sqrt{\omega_0^2 - \gamma^2}$

- Suppose the roots are complex and we have a solution that oscillates
- At time t = 0, no current is flowing because of the inductor.

- Therefore, B = 0


• Original equation at time t = 0:

$$V - L\frac{di}{dt} = 0$$


$$\frac{di}{dt}\Big|_{t=0} = A\omega \twoheadrightarrow A = V/\omega L$$

$$i(t) = \frac{V}{\omega L} e^{-\gamma t} \sin \omega t$$

- Example:
- V = 10 V
- $R = 10 \Omega$
- L = 5 mH
- $C = 0.05 \ \mu F$

Mutual Inductance

- The magnetic flux is generated by the current in Coil 1
- The changing magnetic flux induces a potential difference across Coil 2

$$\Delta V_2 = -N_2 \frac{d\phi_{12}}{dt} = -M_{12} \frac{dI_1}{dt}$$

• Likewise, a magnetic flux can be generated by current in Coil 2 which induces a potential difference across Coil 1:

$$\Delta V_1 = -N_1 \frac{d\phi_{21}}{dt} = -M_{21} \frac{dI_2}{dt}$$

Mutual Inductance

 The reciprocity theorem can be used to show that

$$M_{12} = M_{21} \equiv M$$

• Mutual inductance can be expressed in terms of self-inductance of each coil:

$$M = \sqrt{L_1 L_2}$$

 This assumes optimal coupling between the two coils which is not always the case

$$M = k\sqrt{L_1 L_2}$$

Mutual Inductance

Ċ,

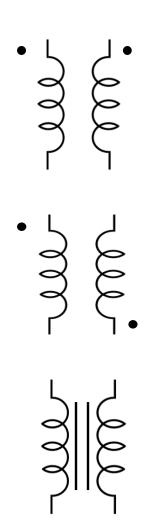
 I_2

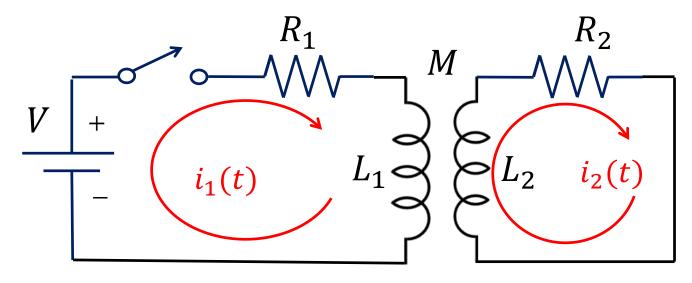
d

а

b

 I_1


Notice the sign convention of the currents used in this definition!


• Kirchhoff's rules:

$$V_b = V_a - L_1 \frac{dI_1}{dt} - M \frac{dI_2}{dt}$$
$$V_d = V_c - L_2 \frac{dI_2}{dt} - M \frac{dI_1}{dt}$$

Coupled Inductors

- This represents an arbitrary mutual inductance as we have been discussing:
- When the secondary coil is connected backwards we need to flip the sign of the induced potential:
- This just indicates that the flux is contained in a core material (like iron or ferrite):

$$V - i_1 R_1 - L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} = 0$$

$$-i_2 R_2 - L_2 \frac{di_2}{dt} + M \frac{di_1}{dt} = 0$$

• Assume solutions might be of the form:

$$i(t) = I e^{-\alpha t}$$

$$\begin{pmatrix} R_1 - \alpha L_1 & \alpha M \\ \alpha M & R_2 - \alpha L_2 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} V \\ 0 \end{pmatrix}$$

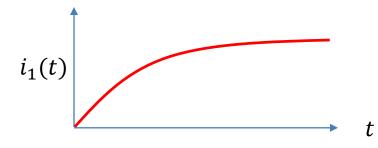
• First, solve the homogeneous equation:

$$\begin{pmatrix} R_1 - \alpha L_1 & \alpha M \\ \alpha M & R_2 - \alpha L_2 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\alpha^2 (L_1 L_2 - M^2) - \alpha (R_1 L_2 + R_2 L_1) + R_1 R_2 = 0$$

• When the coupling is perfect, $M^2 = L_1 L_2$ and $\alpha = \frac{R_1 R_2}{R_1 L_2 + R_2 L_1}$

• Eigenvectors:


$$\begin{pmatrix} R_1 - \alpha L_1 & \alpha M \\ \alpha M & R_2 - \alpha L_2 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$B = \frac{\alpha L_1 - R_1}{\alpha M} A$$

• Add in the particular solution:

$$i_{1}(t) = A e^{-\alpha t} + \frac{V}{R_{1}}$$
$$i_{2}(t) = A \left(\frac{\alpha L_{1} - R_{1}}{\alpha M}\right) e^{-\alpha t}$$

• Initial condition: $i_1(0) = 0 \Rightarrow A = -V/R_1$

• The current in the first loop behaves as before:

• The current in the second loop:

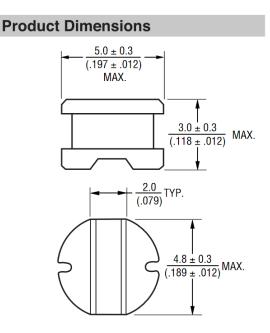
$$i_2(t) = -\frac{V}{R_1} \left(\frac{L_1 - R_1/\alpha}{M}\right) e^{-\alpha t}$$
$$= \frac{V}{R_1} \left(\frac{R_1 L_2}{M R_2}\right) e^{-\alpha t} = \frac{V}{R_2} \sqrt{\frac{L_2}{L_1}} e^{-\alpha t}$$

(Assuming perfect coupling)

• Special case when $R_1 = R_2$ and $L_1 = L_2$:

• Recall that for an ideal solenoid,

i(t)


$$L = \frac{\mu_0 N^2 A}{\ell}$$
$$\sqrt{\frac{L_2}{L_1}} = \frac{N_2}{N_1}$$

t

(sometimes called the "turns ratio")

- In the earlier example we used L = 5 mH
- What does a 5 mH inductor look like?
- Example: Bournes SDR0503-502JL

Features

- Available in E12 series
- Low profile of only 3.3 mm
- High inductance of 15 mH
- RoHS compliant*

Applications

- Input/output of DC/DC converters
- Power supplies for:
 - Portable communications equipment
 - Camcorders
 - LCD TVs

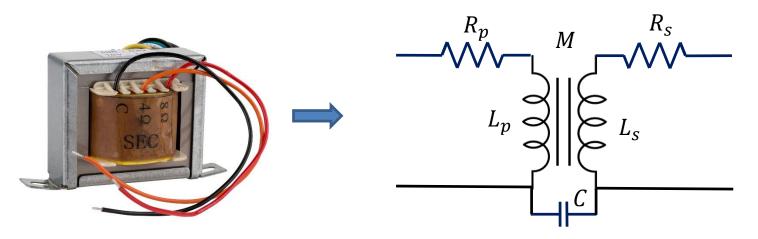
SDR0503 Series - SMD Power Inductors

Electrical Specifications

Bourns Part No.	Inductance 1kHz		Q	Test	SRF	RDC	l rms	l sat
	(μΗ)	Tol. %	Ref.	Frequency (MHz)	Min. (MHz)	Max. (Ω)	Max. (A)	Тур. (А)
SDR0503-100ML	10	± 20	10	2.52	30.0	0.13	1.300	1.600
SDR0503-120ML	12	± 20	20	2.52	29.0	0.16	1.200	1.450
SDR0503-150ML	15	± 20	20	2.52	27.0	0.19	1.050	1.260
SDR0503-180ML	18	± 20	20	2.52	24.0	0.21	0.950	1.300
SDR0503-220ML	22	± 20	20	2.52	22.0	0.28	0.900	1.060
SDR0503-270ML	27	± 20	20	2.52	20.0	0.32	0.800	1.000
SDR0503-330KL	33	± 10	15	2.52	18.0	0.38	0.700	0.850
SDR0503-390KL	39	± 10	15	2.52	17.0	0.42	0.650	0.800
SDR0503-470KL	47	± 10	20	2.52	14.0	0.60	0.600	0.750
SDR0503-560KL	56	± 10	20	2.52	13.0	0.71	0.500	0.700
SDR0503-680KL	68	± 10	20	2.52	12.0	0.76	0.450	0.600
SDR0503-820KL	82	± 10	15	2.52	10.0	0.88	0.420	0.520
SDR0503-101KL	100	± 10	40	0.796	9.0	1.60	0.400	0.480

General Specifications

Materials Core.....Ferrite DR WireEnameled copper TerminalAg/Ni/Sn Rated Current. Ind. drop 10 % typ. at Isat Temp. Rise......40 °C max. at rated Irms Packaging...... 500 pcs. per reel


	NOU TILUE		± •	U TV	0.202	1.0		0.040	0.000
SDR05	503-502JL	5000	± 5	40	0.252	1.0	60.00	0.039	0.050
00000		5000	-	40	0.050	4.0	70.00	0.000	0.050

- Real inductors dissipate energy in the core material.
 - A "high-Q" inductor dissipates less energy than a "low-Q" inductor
- Real inductors are made with a coil if wire that is usually very thin and has its own resistance.
 - RDC is the DC resistance of the inductor
 - In this example it is 60 Ω .
- If you put too much current through the inductor it will dissipate too much heat and start to smoke...
 - In this example the maximum current is 39 mA
- The core material will saturate with a maximum magnetic field strength
 - In this case the core saturates at 50 mA

• A model for a real inductor can be constructed from ideal circuit elements:

• A model for real coupled inductors:

Electrical Specifications	6 (@25C):
----------------------------------	-----------

Current	Inductance ++	Resistance		
DC Amps	Henries	Ohms		
22.5	0.005	0.06		
<pre>++ = Inductance tolerance -20%, + 50 %</pre>				

Dimensions: Unit: In inche						
Α	В	С	D	E		
3.750	4.50	4.187	3.750	3.50		
Weight: 12 75 lbc						

Weight: 12.75 lbs.

This equipment might need to handle 500 kV and thousands of amperes.