

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

More Information

- Course web page, whereat can be found the syllabus: http://www.physics.purdue.edu/~mjones/phys53600 Spring2020
- Information about the lab is posted at the URL: http://www.physics.purdue.edu/~mjones/phys53600 Spring2020/lab

- Please look at the introductory material before the lab and in the future, review the instructions before your lab period.
- This week will be a bit informal since I'm still figuring out how this all will work...

Two Loops

Step 1: Assign currents to each loop

Two Loops

Step 2: Apply Kirchhoff's Loop rule

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

Two Loops

- Interesting questions:
 - Is there only one way to draw the loops?
 - What if we draw them differently?
 - Do we get the same answer?
 - What if we draw more than two loops?
- This provides a good example for applying Kirchoff's rules

Step 1: Assign currents to each loop

Step 2: Apply Kirchhoff's Loop rule

$$V_1 - (I_1 + I_3)R_1 - (I_1 - I_2)R_2 = 0$$

$$V_2 - (I_2 + I_3)R_3 - (I_2 - I_1)R_2 = 0$$

$$V_1 - (I_1 + I_3)R_1 + V_2 - (I_2 + I_3)R_3 = 0$$

- Notice that these three equations are not linearly independent.
 - The last equation is the sum of the first two equations.

Write this as a matrix equation:

$$\begin{pmatrix} R_1 + R_2 & -R_2 & R_1 \\ -R_2 & R_2 + R_3 & R_3 \\ R_1 & R_3 & R_1 + R_3 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \\ V_1 + V_2 \end{pmatrix}$$

• Determinant:

$$(R_1 + R_2) \left((R_2 + R_3)(R_1 + R_3) - R_3^2 \right)$$

$$- R_2(R_2(R_1 + R_3) + R_1R_3)$$

$$- R_1(R_2R_3 + R_1(R_2 + R_3)) = 0$$

• I_3 can be expressed as a function of I_1 and I_2

Change of variables in the first two equations:

$$I'_1 = I_1 + I_3$$

 $I'_2 = I_2 + I_3$

Then,

$$V_1 - I_1'R_1 - (I_1' - I_2')R_2 = 0$$

$$V_2 - I_2'R_3 - (I_2' - I_1')R_2 = 0$$

 The point is that we need to generate a complete set of linearly independent equations

Very Simple Example

- Back to one loop:
- We could draw the same loop twice
- Kirchhoff's rules:

$$V - (I_1 + I_2)R = 0$$

$$V - (I_1 + I_2)R = 0$$

- There is not enough information to solve for I_1 and I_2 independently.
- Too many unknowns, not enough linearly independent equations.

Resistors and Capacitors

Potential differences:

a
$$V_b = V_a - V$$

a $V_b = V_a - V$

b $V_b = V_a - IR$

a $V_b = V_a - IR$

b $V_b = V_a - IR$

The electric potential at (a) is greater than the electric potential at (b).

Charge on Capacitors

 The charge on a capacitor is the integrated current:

$$Q(t) = Q_0 + \int_0^t I(\tau)d\tau$$
$$I(t) = \frac{dQ}{dt}$$

- We still need to solve for I(t) but now it is the solution to an integral equation.
- It will be convenient to transform it into a differential equation
- But don't forget about the initial conditions!

Very Simple Circuit

• The switch is closed at t=0 allowing the current to flow in the circuit.

RC Circuits

• Kirchhoff's Loop Rule:

$$-I(t) R - \frac{Q(t)}{C} = 0$$

• Differentiate...

$$R\frac{dI}{dt} + \frac{1}{C}I(t) = 0$$

$$\frac{dI}{dt} = -\frac{I(t)}{RC}$$

This reminds you that I is not constant... it is a function of t.

This is a differential equation...

RC Circuits

You should know how to solve this differential equation.

$$\frac{dI}{I} = -\frac{dt}{RC}$$

$$\log\left(\frac{I(t)}{I_0}\right) = -\frac{t}{RC}$$

$$I(t) = I_0 e^{-t/RC}$$

- Now we must apply the initial conditions.
- At t = 0, Kirchhoff's rules give:

$$-I_0 R - \frac{Q_0}{C} = 0$$

$$I_0 = -\frac{Q_0}{RC}$$
Notice that this is negative!

RC Circuits

Complete solution:

$$I(t) = -\frac{Q_0}{RC}e^{-t/RC}$$

- The current flows opposite the assumed direction
 - We drew a clockwise loop of current
 - The solution is always negative
 - The current actually will flow anti-clockwise

$$V - i_1 R_1 - \frac{1}{C_1} \int_0^t (i_1(\tau) - i_2(\tau)) d\tau = 0$$
$$-i_2 R_2 - \frac{1}{C_2} \int_0^t i_2(\tau) d\tau - \frac{1}{C_1} \int_0^t (i_2(\tau) - i_1(\tau)) d\tau = 0$$

Initial conditions:

Assume both capacitors are discharged at t=0.

Differentiate the system of equations:

$$-R_1 \frac{di_1}{dt} - \frac{1}{C_1} (i_1 - i_2) = 0$$

$$-R_2 \frac{di_2}{dt} - \frac{1}{C_2} i_2 - \frac{1}{C_1} (i_2 - i_1) = 0$$

Assume that the solutions are of the form

$$i_1(t) = I_1 e^{-\gamma t}$$

$$i_2(t) = I_2 e^{-\gamma t}$$

$$\gamma i_1(t) - \frac{i_1(t)}{C_1 R_1} + \frac{i_2(t)}{C_1 R_1} = 0$$

$$\gamma i_2(t) - \frac{i_2(t)}{C_2 R_2} - \frac{i_2(t)}{C_1 R_2} + \frac{i_1(t)}{C_1 R_2} = 0$$

$$\left(\gamma - \frac{1}{C_1 R_1} - \frac{1}{C_1 R_1} - \frac{1}{C_1 R_2} \right) \begin{pmatrix} i_1(t) \\ i_2(t) \end{pmatrix} = 0$$

$$\left(\frac{1}{C_1 R_2} - \frac{1}{C_1 R_2} - \frac{1}{C_1 R_2} \right) \begin{pmatrix} i_1(t) \\ i_2(t) \end{pmatrix} = 0$$

Non-trivial solutions exist when

$$\det\begin{pmatrix} \gamma - \frac{1}{C_1 R_1} & \frac{1}{C_1 R_1} \\ \frac{1}{C_1 R_2} & \gamma - \frac{1}{C_2 R_2} - \frac{1}{C_1 R_2} \end{pmatrix} = 0$$

$$\gamma^2 - \gamma \left(\frac{1}{C_1 R_2} + \frac{1}{C_1 R_1} + \frac{1}{C_2 R_2} \right) - \left(\frac{1}{C_1 R_1} \right) \left(\frac{1}{C_2 R_2} \right) = 0$$

- The roots to this quadratic equation are real and we label them γ_1 and γ_2 .
- Eigenvectors are labeled I_1 and I_2 .

The general solution can be written

$$i(t) = AI_1e^{-\gamma_1 t} + BI_2e^{-\gamma_2 t}$$

• At time t=0,

$$i_1(0) = \frac{V}{R_1}$$
$$i_2(0) = 0$$

- This is sufficient information to solve the system of differential equations.
- But the algebra gets tedious...

Numerical Methods

 If we assigned numerical values to each component, then we could solve this numerically:

$$\Delta i_1 = -\frac{i_1 - i_2}{R_1 C_1} \Delta t$$

$$\Delta i_2 = \left(-\frac{i_2}{R_2 C_2} - \frac{i_2 - i_1}{R_2 C_1}\right) \Delta t$$

• Initial conditions:

$$i_1(0) = \frac{V}{R_1}$$
$$i_2(0) = 0$$

Numerical Methods

$$V = 10 V$$

$$R_1 = 100 \Omega$$

$$R_2 = 200 \Omega$$

$$C_1 = 1 \mu F$$

$$C_2 = 2 \mu F$$

Two Loops

- So far we have calculated potential differences across circuit elements
 - The absolute potential of the circuit is irrelevant
- Nevertheless, it is extremely convenient to assign the potential at ONE point in the circuit
 - Usually to a potential of zero volts
- All potential differences are then relative to this fixed reference potential
- We can refer to these potential differences as the voltage at any point in the circuit

 We label the point in the circuit that is at ground potential (zero volts) with a special symbol:

- Sometimes we also label the ground potential
- Everything attached to a ground symbol is at the same electrical potential (typically zero volts)
- There is no need to join everything at zero volts by a single wire

- Most numerical techniques store voltages at each node in the circuit relative to ground.
- Each circuit must define a ground reference somewhere.
- But be careful! Ground potential in one circuit might not be the same electrical potential as the ground potential in another circuit.
 - If the two grounds were connected by a wire, would a current flow?

- The points that are labeled as "ground" in each circuit are probably not at the same electrical potential.
- Each circuit might operate as expected in isolation but connecting them by a wire might be extremely unsafe!