
Physics 53600

Electronics Techniques for
Research

Spring 2020 Semester
Prof. Matthew Jones

The usual ANNOUNCEMENT

• Obvious changes to the course:
– No in-person lectures: you’ll have to read the lecture notes

yourself

– No more labs: don’t worry about it – your grade will be based
on work done so far

– Remaining assignments will try to cover topics that would have
been explored in the lab

– Second mid-term: simplest to cancel it

– Final exam: I think it will be a 24 hour exam with written
responses that can be easily sent by e-mail.

• Changes to grading scheme:
– Old scheme: Assignments (30%) exams (40%) lab (30%)

– New scheme: Assignments (50%) exams (25%) lab (25%)

The usual ANNOUNCEMENT

• Because there won’t be any in-person lectures, you will
have to read the lecture notes yourself.

• To demonstrate that you have read them, you will be
required to answer one or two simple questions before
the next lecture is posted.

• The question will probably be at the beginning and you
just have to e-mail me the answer

mjones@physics.purdue.edu

• To make this easy, please make your subject look like this:

“PHYS53600 Lecture xx questions Your Name”

• These will be the remaining part of your assignment
grade.

mailto:mjones@physics.purdue.edu

More ANNOUNCEMENTS

• Feel free to send me questions about the lecture
material if there is anything you don’t
understand. I’m happy to give more explanation
(and I’m soooo bored.)

• Send me e-mail if you think it would be useful to
arrange a time as a class to have a time where
you can ask questions by video.
– So far a couple of people have said it would be

– Maybe something like Wednesday, April 30th at 10:30
am EDT?

LECTURE 26 QUESTIONS

1. Is 10:30 am on Thursday, April 30th (the normally
scheduled class time) a good time for a Webex
meeting to ask any questions you might have?

2. Describe an application where a processor would
be well suited, as opposed to programmable
logic.

3. Describe an application where programmable
logic would be better suited.

Microprocessors

• So far we have discussed
– Analog electronics

– Digital electronics

• These are sometimes essential elements of data
acquisition or signal processing systems

• But they are not always the best choice…

• The design process usually tries to optimize many
different types of resources
– Time (design time, implementation time)

– Cost (design cost, cost to build, cost to maintain)

– Performance (does the design satisfy the requirements?)

– Available expertise

Microprocessors

• Microprocessors can be a very effective element
of a data acquisition/instrumentation system

• Advantages:
– Reprogrammable
– High level programming languages
– Low cost
– System-on-Chip integrates many digital logic elements

into one device

• Disadvantages:
– Sequential program execution
– Limited bandwidth
– Sometimes too slow for some applications

Microprocessors

• An entire course could be dedicated to
microprocessor architectures

• Historically, using a microprocessor required
designing an entire computer, complete with
memory and I/O interfaces

• Over the past 15 years most of these features
have been integrated into processors to
provide complete computer systems in one
package.

System-on-Chip Microprocessors

• Include more functionality than just the
processor:

– Electrically erasable read-only-memory (stores
programs)

– Static random-access-memory (stores data)

– General purpose IO pins

– Analog-to-digital converters

– Serial communications devices

• UART, I2C, SPI interfaces

Example (cost is < $1)

• You don’t need a lot of pins to have a fully
functional SOC:

• Microchip ATTINY13A-SSU:

• Six I/O pins can be configured to perform
various functions

Example: ATTINY13A-SSU

• There is a lot going on inside:

• Three pins implement an SPI
interface that can be used to
write a program to the non-
volatile memory

• When powered on or reset,
the processor executes the
instructions stored in
memory.

Example: ATTINY13A-SSU

• Typically, a high-level programming language (an assembler or compiler)
would be used to generate the executable program memory image.

• This would then be downloaded into the non-volatile flash memory.

Example: ATTINY13A-SSU

• The first 64 bytes of
the address space
control the operation
of the chip:

Example ($4)

• The ATmega32U4 is used for the popular
Arduino platform:

• Features:

– 32 kB flash RAM

– 2.5 kB static RAM

– USB interface

– Serial port (UART)

– 12 channel 10-bit ADC

– Lots more…

Example: ATmega32U4

• As with the previous example, the peripherals
are controlled using dedicated addresses

• In this case there are 128 bytes reserved for
peripheral control interfaces

Example: Beaglebone ($50)

• This is a single-board computer based on the
CORTEX A8 processor:

• Peripherals:

– Ethernet

– HDMI video

– USB

– GPIO pins

– I2C, SPI, UART

– ADC’s

Example: Beaglebone ($50)

• The CORTEX A8 processor is powerful enough to run
various operating systems (Linux/Adroid)

• Typically written to a microSD memory card

• Provides everything you would expect from a Linux
environment

• The Linux kernel attempts to control access to low-
level hardware

• This is an open-source project… it’s free, but you get
what you pay for

Example: Beaglebone

Temperature/humidity/
CO2 sensor read out
using I2C

Remote connection to
processor over WiFi

Running Debian Linux
distribution

RS485 network
interfaced using USB

You can build quite complex data acquisition systems using inexpensive open-source
hardware.

“Soft” Processors
• Microprocessors can be implemented in

programmable logic and interfaced directly with
FPGA resources.

• Xilinx provides free access to its MicroBlaze core
designs

• Intel (which bought Altera) provides it’s version
(Nios-II)

Comparison of SOC and PC’s

• At some point, you might really want to use a PC
instead
– Much more memory
– Higher speeds
– Multi-core processors
– Higher network/memory bandwidth

• Usually there is no direct access to hardware
• Hardware interfaces must conform to the PC

architecture
– PCIe interfaces and associated software drivers
– USB
– Serial ports (eg. RS232)

Summary

• Today, microprocessors and system-on-chip
solutions are very powerful, inexpensive, and
relatively easy to use

• Some are very simple (small pin count)

• Some are sophisticated but can be bought as
modules and inserted into a design

– No need to design a sophisticated PCB

