
Physics 53600

Electronics Techniques for
Research

Spring 2020 Semester
Prof. Matthew Jones

The usual ANNOUNCEMENT

• Obvious changes to the course:
– No in-person lectures: you’ll have to read the lecture notes

yourself

– No more labs: don’t worry about it – your grade will be based
on work done so far

– Remaining assignments will try to cover topics that would have
been explored in the lab

– Second mid-term: simplest to cancel it

– Final exam: I think it will be a 24 hour exam with written
responses that can be easily sent by e-mail.

• Changes to grading scheme:
– Old scheme: Assignments (30%) exams (40%) lab (30%)

– New scheme: Assignments (50%) exams (25%) lab (25%)

The usual ANNOUNCEMENT

• Because there won’t be any in-person lectures, you will
have to read the lecture notes yourself.

• To demonstrate that you have read them, you will be
required to answer one or two simple questions before
the next lecture is posted.

• The question will probably be at the beginning and you
just have to e-mail me the answer

mjones@physics.purdue.edu

• To make this easy, please make your subject look like this:

“PHYS53600 Lecture xx questions Your Name”

• These will be part of your assignment grade, maybe
contributing 10% of your total grade.

mailto:mjones@physics.purdue.edu

More ANNOUNCEMENTS

• Feel free to send me questions about the lecture
material if there is anything you don’t
understand. I’m happy to give more explanation
(and I’m soooo bored.)

• Send me e-mail if you think it would be useful to
arrange a time as a class to have a time where
you can ask questions by video.
– So far a couple of people have said it would be

– Maybe something like Wednesday, April 30th at 10:30
am EDT?

LECTURE 25 QUESTIONS

1. Dream up some other type of problem that
can be described using a finite state machine.
What are the states? What are the inputs?

Digital Design Principles

• In the previous lecture we discussed
programmable logic devices

• It is much more likely that you will implement
complex logic using an FPGA rather than build
it out of discrete integrated circuits

• But, how does one design a digital system that
accomplishes some specific task?

• There are some well-defined design
methodologies that can help…

Digital Design Principles

• So far we have discussed lots of digital logic
elements out of which a digital system can be
built

• What we need next is a model for thinking
about problems that can be easily translated
into digital logic

• A very important design methodology is the
use of “finite state machines”

Finite State Machines

• Many (but not all) systems can exist in one of
several discrete “states”

• An “event” will cause a transition to occur
between the states

• This model can be very easily translated into
digital logic

• Let’s start with a simple example…

Traffic Light Problem

• Suppose we need to solve the problem of
controlling a set of traffic lights.

• Start with one pedestrian controlled light, like the
one on Northwestern Avenue

• There are obviously at least two states:
– Traffic light is green (cars keep driving)
– Traffic light is red (cars must stop)

• There are a couple other states that make it even
better:
– A pedestrian has pushed the “walk” button
– Traffic light is yellow (prepare to stop/floor it!)

Traffic Light Problem

• The transitions between the states can
happen on a fixed period of maybe a few
seconds

• Whether there is a transition or not depends
on external and internal information

• These are some possible events:

– A pedestrian pushes the “walk” button

– A timer has expired

Traffic Light Problem

• We represent this problem as a graph where
the nodes are the states:

Light is green
Light is yellow

Light is red

Pedestrian
present

Traffic Light Problem

• The edges on the graph represent the allowed
state transitions

Light is green
Light is yellow

Light is red

Pedestrian
present

Traffic Light Problem

• Next, the edges are labeled events that are
sampled on each clock cycle.

Light is green
Light is yellow

Light is red

Pedestrian
present

Button pushed

Button pushed

Timer expired

Timer expired
Timer expired

Traffic Light Problem

• Certain actions happen when transitions
between states occur

Light is green
Light is yellow

Light is red

Pedestrian
present

Button pushed /
set timer to 15 sec.

Button pushed

Timer expired /
set timer to 5 sec.

Timer expired / set
timer to 30 sec.Timer expired /

reset button

Traffic Light Problem

• Let’s re-label these to make it easier to
describe the inevitable Boolean algebra:

G
Y

R

P

𝐵𝑃/𝑆𝑇15

𝐵𝑃

𝑇𝐸/𝑆𝑇5

𝑇𝐸/𝑅𝐵
𝑇𝐸/𝑆𝑇30

Finite State Machine

• The states can be represented in various ways
by the contents of a set of flip-flops.

• The states are encoded in the contents of a set
of D flip-flops

• The outputs and the next states are
determined by the current state and the
external/internal inputs

Finite State Machine

• One way to encode the states is using a binary
number.

• In this case we have four states, so we need
two bits, 𝐷0 and 𝐷1:

𝑅 = 00
𝑃 = 01
𝑌 = 10
𝐺 = 11

𝐷1 𝐷0

Finite State Machines

Now we work out
the “next state”
logic:

𝑫𝟏 𝑫𝟎 𝑩𝑷 𝑻𝑬 𝑫𝟏
′ 𝑫𝟎

′

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 1 0 1

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 1 1

1 0 1 0 1 0

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 0 0

1 1 1 0 1 1

1 1 1 1 0 0

Finite State Machines

• One way to proceed is to reduce the next state
logic to a bunch of Boolean algebra:

𝐷0
′ = 𝐷0 ∙ 𝐷1 ∙ 𝐵𝑃 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸

𝐷1
′ = 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸 + 𝐷0 ∙ 𝐷1 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸

• Another way (especially for complex logic)
would be to store the transitions in a lookup
table
– in this case a 16x2 bit read-only-memory

Finite State Machines

• Output logic:

𝑫𝟏 𝑫𝟎 𝑩𝑷 𝑻𝑬 𝑺𝑻 𝑹𝑩

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 1 0

1 0 0 0 0 0

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 0 1

1 1 1 0 0 0

1 1 1 1 0 1

Finite State Machines

• Again, the output logic could be implemented
using Boolean algebra:

𝑆𝑇 = 𝐷0 ∙ 𝐷1 ∙ 𝐵𝑃 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸 + 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸
𝑅𝐵 = 𝐷0 ∙ 𝐷1 ∙ 𝑇𝐸

• Again, this could also be implemented using a
look-up table / read-only-memory

Hardware Implementation

𝐷1

𝐷1
′

𝐶𝑙𝑘

𝐷0

𝐷0
′

𝐶𝑙𝑘

𝐷0 𝐷1 𝑇𝐸 𝐵𝑃

𝐷0
′

Something
similar for D1’

𝑅𝐵

Something
similar for

ST

Final Details

• This implements all the state transition logic
but there a few things left over…

• The button can be implemented as an S-R flip-
flop. It doesn’t need to be edge sensitive.

S

R𝑅𝐵

𝑉𝐶𝐶

Q 𝐵𝑃

Final Details

• The counter can load different values selected
using a multiplexer:

𝐷0 𝐷1 𝐶𝑙𝑘

15

5

30

???

D

LOAD

ST

TC TE

Count-down

Final Details

• The power to the lights can be controlled using high
power MOSFET’s that are driven by logic based on the
individual states.

• This same design process could be applied to more
complicated traffic light configurations
– Multiple lanes of traffic
– Sensors to determine when cars are present
– Multiple pedestrian crossing inputs

• Obviously the whole process gets more complicated
and tedious…

Description using VHDL

• The previous discussion was intended to show
how digital design can be carried out in principle

• The important point to recognize is that it can be
rather prescriptive

• Translating the finite state machine diagram into
logic might be tedious, but it doesn’t require
much creativity

• These steps are well suited to be carried out by a
computer

Description using VHDL

• This is NOT a course in VHDL

• However, it is intended to teach you about the
advantages of using hardware definition
languages for complex digital design

• The following examples illustrate how the
components of the traffic light problem can be
described in a way that will be correctly
interpreted by the design tools.

VHDL Description of a Multiplexer

• A multiplexer is an example of combinatorial
logic.

– It can be synthesized using only logic gates

– There is no need for latches or memory

• Synthesizable VHDL description:

VHDL Description of a Counter

• A counter is an example of sequential logic.

• First, we can describe what the interface will
look like:

VHDL Description of a Counter

• Then we can describe how it works:

VHDL Description of a Finite State
Machine

• The interface to the counter component must be described before it can
be used.

• All the signals used in the design need to be declared
• The state is defined using an enumerated type with four states.

VHDL Description of a Finite State Machine

Summary

• Again, this is not a course in VHDL.

• However, the point I’m trying to make is that
describing the functionality using a hardware
definition language can be much easier than
implementing the finite state machine by
hand.

• Describing a problem in terms of a finite state
machine is a very useful way to build complex
digital designs.

