PURDUE D)epaRTMENT OF Physics

Physics 53600
Electronics Techniques for
Research

Now in %WW%M%?

Spring 2020 Semester

Prof. Matthew Jones

The usual ANNOUNCEMENT

* Obvious changes to the course:

No in-person lectures: you’ll have to read the lecture notes
yourself

No more labs: don’t worry about it — your grade will be based
on work done so far

Remaining assignments will try to cover topics that would have
been explored in the lab

Second mid-term: simplest to cancel it

Final exam: | think it will be a 24 hour exam with written
responses that can be easily sent by e-mail.

 Changes to grading scheme:

Old scheme: Assignments (30%) exams (40%) lab (30%)
New scheme: Assignments (50%) exams (25%) lab (25%)

The usual ANNOUNCEMENT

Because there won’t be any in-person lectures, you will
have to read the lecture notes yourself.

To demonstrate that you have read them, you will be
required to answer one or two simple questions before
the next lecture is posted.

The question will probably be at the beginning and you
just have to e-mail me the answer

mjones@physics.purdue.edu
To make this easy, please make your subject look like this:
“PHYS53600 Lecture xx questions Your Name”

These will be part of your assignment grade, maybe
contributing 10% of your total grade.

mailto:mjones@physics.purdue.edu

More ANNOUNCEMENTS

* Feel free to send me questions about the
lecture material if there is anything you don’t

understand. I’'m happy to give more
explanation (and I’'m soooo bored.)

* Send me e-mail if you think it would be useful
to arrange a time as a class to have a time
where you can ask questions by video.

LECTURE 24 QUESTIONS

1. Some time before the final exam, do you want to
arrange for a Webex meeting where everyone has
the opportunity to ask questions about the
lecture notes or other material in the course?

2. For-profit companies often pay thousands of
dollars per year to use FPGA design tools but the
same tools are often given away for free for
academic/research use.

Why do you suppose that is?

Designing with Discrete Logic Circuits

Many of the digital circuits we have discussed so
far exist as discrete integrated circuits.

They usually (but not always) require designing
and fabricating a printed circuit board to be used

reliably.

This design process can be time consuming,
expensive, and error-prone.

Simple mistakes can be fixed by cutting traces on
the PCB with a razor blade, or soldering “blue
wires” where new connections are needed.

Fixing Mistakes on PCB’s

“Blue wire”

Blue wires

Designing with Discrete Logic Circuits

e Often it is useful to budget for two (or more) PCB
production runs

— First, a small number of prototype boards to find and fix
mistakes

— Second, a larger number of boards with a MUCH higher
chance of having no mistakes

— Hopefully you don’t need a third batch, but sometimes it’s
inevitable

e This process can be expensive in several ways
— Design time and expertise required
— Cost to manufacture
— Cost of parts
— Cost to assemble
— Time needed to test, debug, re-design

Alternatives to Discrete Logic Circuits

* |tis of great benefit to be able to fix mistakes
in logic without having to re-manufacture
anything

e Several ways to achieve this:

— Programmable Logic Arrays
— Field-Programmable Gate Arrays
— Microprocessors/Microcontrollers
 These are general-purpose logic devices that

can be re-configured after assembly if
necessary

Programmable Logic Arrays

* First, consider some combinatorial logic

— Use Boolean algebra to reduce any expression to a
“sum-of-products”

— Example: three-input “exclusive or”

=x-y+x-y)-Zz+x-y+x-y)-z

Z+xy-Z+x-y)-(x-y)-z
Z+x-y-z+(x+y)-(x+¥y)-z
=Xy Z+x-y-Zz+x-y-Zz+x-y-zZ

Programmable Logic Arrays

* The original PLA’s (developed in the 1970’s)
had arrays of AND and OR operations with
optional inverters at each input.

oy

OR plane

AND plane

Programmable Logic Arrays

* The logic could be implemented by “burning fuses”
that removed parts of the metal interconnect layer in

the circuit.

 The connections left behind implement the desired
logic:

YYTY

<R R

R s iR el

AND plane

Programmable Logic Arrays

These devices could only be programmed once

Still, if you got it wrong you could simply replace the
component on a PCB with a new one

Newer PLA’s implemented combinatorial logic features in
their available resources (called “macrocells”)

These require software to generate the physical
configuration needed to implement the desired logic

They also require a programmer to physically “burn in”
the design.

Then they are ready for use...

Newer designs are “Electrically Erasable” and can be
reconfigured multiple times.

Example: Atmel ATF16V8B

20-lead PDIP
(Top View)
ok <l 20b Ve
Halz 1e|lF vo
12 gl 1afk voO
13 g 4 17/[h o
i 2lls 1e|lh o
I5qlle 1s{k vo
6 9|7 1a|[p WO
i72lla |k o
18 o 9 12|[p WO
GND g] 10 11|} 19/0E
Figure 2-1.

10 Input Pins

Things to notice:

1. Power (V.. and GND) pins are in the usual place

. There is a dedicated CLK input pin

3. There is a dedicated output-enable pin (OE) which is
active low.

4. There are 8 inputs and 8 outputs

5. They are INEXPENSIVE! This one costs only 86¢

N

Block Diagram

Programmable .
Interconnect 4& | Logic

and Option

Combinatorial > — 8 1/0 Pins

Logic Array < Up to

8 Flip-Flops

k4

>

F Y

Example: Atmel ATF16V8B

CLK
1=

Input Lines
* Logic array: b .
1 Logic
This part is basically the same i v Hore e
as in the previous example. v —
The main difference is that Ssmcii= S=iiis Bl o [v
now there is an “output logic” « et P SHh
macrocell: [s
H Logic
CLK ofH
s 1-_ 15
_________________ el
l 'H : A H -
L a1 | BE ou L e
— QD |
T j — :
— XOR QP!
® I ’7 3—‘ : .:. Oulput 1~-—E:B 13
ECe ' =
OE DLlu:;d 1 £ 12
. —

Example: Atmel ATF16V8B

* The design software is
usually free to download
and install.

* The programming
interface is standard
enough that there are
many third-party
programmers available

e Usually interface to a PC using USB or some other
interface.

Complex Programmable Logic Devices

* The same idea has been extended to devices
that have much more complex logic resources
— Large numbers of inputs/outputs
— Dedicated block memory

— Large numbers of macrocells with sophisticated
combinatorial/sequential logic

— Dedicated networks for routing of clock signals

* Many are “in-circuit” reprogrammable

Example: Xilinx CoolRunner-Il Series

* These often have MANY inputs/outputs
— They typically can have of the order of 100 pins

— Various types of packages (leads on all sides, or
ball grid arrays)

Example: Xilinx CoolRunner-Il Series

* Features: XC2C128 example ($9.05 each)

— Separate core voltage (1.8 volts) and I/O voltages
(1.5, 1.8, 2.5, 3.3 volts)

— Dedicated pins for programming/debugging
— Sophisticated macrocell architecture:

Field-Programmable Gate Arrays

* These are sort of like CPLD’s, except that they
download their configuration each time power
is applied

 These can have very sophisticated resources
that are available for use:

— High speed serial transceivers
— Clock synthesizer circuits

— Large block memory resources
— Large numbers of macrocells
— Dedicated clock routing fabric

FPGA Example: Xilinx Spartan-3 series

e Example: XC35400-4FTG256C
— 173 1/0 pins
— Core voltage: 1.2 volts
— 896 logic blocks
— 8064 logic elements
— 400,000 logic gates
— 294,912 bits of RAM
— Costs $34.95 each

Hardware Synthesis Tools

* Now we have a new problem:

— The resources are so abundant and sophisticated that
it is essentially impossible for a human to specify each
and every interconnection

* |nstead we rely on synthesis tools:

— Emphasis on “describing” what we want the hardware
to accomplish

— This can be done using schematics and elementary
logic blocks

— More commonly done using a “Hardware Definition
Language”

* Rely on vendor-supplied software to translate the
hardware “description” into configuration data

Hardware Synthesis Tools

e Schematic capture using basic logic elements:

E File Edit Maode Options Hieranc by Wiew Dizplay Window Help _|5’|5|
Ble|als(a] & elel NQE) < il O x| F=]2 ol
5]
[~
o ‘e 20— [O— |
i AHDZ L —-\ i
_L _jJ/ Lo [sum
E } Rz
é D HBUF Dﬁﬁ AND2
&
+7
G —
S . - L‘h’}DBUF L> corpy
ANDZ
m N _"Ij
___ADDERT |
| 63, 31 | Select and Drag

Hardware Synthesis Tools

* You can also use libraries of sophisticated

design elements:

For example, this is an Arithmetic
Logic Unit (ALU) which could, for
example, add or subtract the two
8-bit inputs based on the
OPCODE inputs.

Hardware Synthesis Tools

* You can also use libraries of sophisticated
design elements which can be customized
using the software tools provided.

C) |
lg¢ " Block Memory Generator wen genrs

This is an example of a
block memory interface.

If you look carefully you can
see that it has the same

g signals as the dual-port

T RAM we discussed
previously (address bus,
data bus, write enable, et...)

Hardware Synthesis Tools

* The important thing to learn is that these
tools are used to DESCRIBE how the design
should function

* They are not usually used to SPECIFY how the
design should function

* There are sophisticated optimization
algorithms that are used to translate the
design into the actual implementation

Hardware Constraints

* Equally important is the way in which
hardware constraints are specified

e These can include

— Which physical pins map to the signals in the
schematic description

— Timing constraints
* Input constraints: when does data arrive at the inputs?

* Timing constraints: frequencies of internal clock signals
e Output constraints: relative timing of outputs

Hardware Constraints

* The synthesis tools typically perform the following
steps:
— Logic reduction and mapping to resources
— Placement of resources in configurable logic blocks
— Routing of signals between the resources

* This exercise usually turns into a big minimization
problem

— Any “solution” that satisfies the constraints is
considered acceptable

e Relies on detailed simulation and measurement of
device properties

Hardware Definition Languages

Eventually, describing everything using
schematics is no longer efficient

Today, we usually use high-level languages to
describe the hardware we want to implement

Very common examples: Verilog and VHDL

They resemble programing languages, but
they are used to describe hardware, not
algorithmes.

Hardware Definition Languages

 The HDL gives the synthesis tools “hints” that
can be easily mapped into hardware resources

 Example: A simple D latch:

D Enable D Q Q
0 0 Latch
0 1 Latch
1 0 0 1
L 1 1 1 0

D-latches can be modeled in behavioral modeling as shown below.

architecture behavior of D_latch is begin
process (D, Enable) begin
if (Enakle = “1') then
0 <= D;
Obar <= not(D);

Hardware Definition Language

 Many design elements rely on clock signals to
synchronize the sampling of data

 Example: An edge-sensitive D-type flip-flop:

FDE

cE— af}—
c—P

architecture behavior of D ff with _ce is begin
process (clk) begln

if rising edge(clk) then
if (ce ‘1Y Lthen
0o« D;
end if;
end if;
end process;
end behavior;

Hardware Definition Language

* Here’s a more complex example showing the
description of block memory:

LIBRARY ieee;
USE ieee.std logic_1164.ALL; —
ENTITY ram infer IS

FORT

{
clock: IN std lcgicy . .
data: IN atd logic wector (31 DOWNTO 0): Interface descr|pt|0n

write address: 1IN integer BANGE 0 to 31; o
read addreas: In integer RANGE 0 to 31;
We: IN atd_logic;
q: CUT atd_logic wector (31 DOWNTO 0)
)i
END ram infer; _J
RRCHITECIUBE rtl OF ram infer IS —
TYPE mem IS ABRRAY (0 TO 31) OF std_leogic_wecter ({31 DOWNIC 0):
SIGHAL ram block : mem;
BEGIN
FROCESS (clock)
BEGIN
IF {clock'event BEND clock = "1') THEN - H H :
It (we = v11) THEN Architecture description
ram block(write_address) <= data;
END IF:
g <= ram block({read address);
END IF:
END FROCESS: _

END rtl:

Practical Details

* So suppose you have a problem that can be
conveniently solved using an FPGA to implement
all the logic

* |t can be very time consuming and expensive to
design a printed circuit board with an FPGA on it

— Usually needs at least a couple years of practical
electrical engineering experience

* But you can often BUY something that does most,
if not all of what you need

— Then you can program it using your custom logic
design

Demonstration Boards

* Many companies sell “demonstration boards” that
can be adapted to serve a specific application:

1300 Henley Court
@ Puliman, WAS9163
509.334.6306
www.digilentinc.com
Cmod™ Board Reference Manual
Revised October 26, 2012
This manual applies to the Cmod rev. D }
%
%
Overview @
%
Cmod boards combine a Xilinx CPLD, a JTAG programming port, and power supply circuits in a convenient 600-mil, \S\m
40-pin DIP package. Cmods are ideally suited for breadboard or other prototype circuit designs where the use of e
small surface mount packages is impractical. All Cmod boards include: 6\

Features include:

* Asingle 3.3V supply voltage (voltage regulation
provided on Cmod board where required);

* Adequate bypass capacitance on all CPLD voltage
supply pins;

* Al available user I/0 signals brought out to DIP pins;

* Once programmed, CPLD designs are non-volatile;

s Designs can easily be ported between Cmods using
different CPLD device families;

* Al Cmod boards are compatible with the free Xilinx
WebPack tools.

The Cmod board.

Demonstration Boards

Basys 3™ FPGA Board Reference Manual

Revised April 8, 2016
This manual applies to the Basys 3rev.C

Overview

The Basys 3 board is a complete, ready-to-use digital circuit development platform based on the latest Artix®-7
Field Programmable Gate Array (FPGA) from Xilinx®. With its high-capacity FPGA (Xilinx part number XC7A35T-
1CPG236C), low overall cost, and collection of USB, VGA, and other ports, the Basys 3 can host designs ranging
from introductory combinational circuits to complex sequential circuits like embedded processors and controllers.
It includes enough switches, LEDs, and other I/0 devices to allow a large number of designs to be completed
without the nead for any additional hardware, and enough uncommitted FPGA I/O pins to allow designs to be
expanded using Digilent Pmods or other custom boards and circuits.

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, higher performance, and more
resources than earlier designs. Artix-7 35T features include:

e 33,280 logic cells in 5200 slices (each slice contains four
B-input LUTs and & flip-flops)

e 1,800 Khits of fast block RAM

s Five clock management tiles, each with a phase-locked
loop (PLL)

& 90 DSP slices

¢ Internal clock speeds exceeding 450MHz

s On-chip analog-to-digital converter (XADC)

The Basys 3.

3,

(S
Q
(@)
*n
<,
O

S

Demonstration Boards

Xilinx - Adaptable. Intelligent. » Boards » Xilinx Kintex-7 FPGA KC705 Evaluation Kit

Xilinx Kintex-7 FPGA KC705 Evaluation Kit

Price: $1,695

Part Number: EK-K7-KC705-G
Lead Time: 6 Weeks

Device Support: Kintex-7

& XILINX.

Buy Online v Contact Sales v

* This can be (but doesn’t have
to be) plugged into the PCle
bus in a PC.

* It provides high-speed
network interfaces that
connect directly to the FPGA.

Dedicated FPGA Modules

* You often have to decide whether it is more economical (in terms of
time and money) to design and build yourself or to just buy already
existing hardware.

* Especially if you have to pay your own electrical engineer, the net
expense is often lower when you buy from a company.

