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The usual ANNOUNCEMENT

• Obvious changes to the course:
– No in-person lectures: you’ll have to read the lecture notes 

yourself

– No more labs: don’t worry about it – your grade will be based 
on work done so far

– Remaining assignments will try to cover topics that would have 
been explored in the lab

– Second mid-term: simplest to cancel it

– Final exam: I think it will be a 24 hour exam with written 
responses that can be easily sent by e-mail.

• Changes to grading scheme:
– Old scheme: Assignments (30%) exams (40%) lab (30%)

– New scheme: Assignments (50%) exams (25%) lab (25%)



The usual ANNOUNCEMENT

• Because there won’t be any in-person lectures, you will 
have to read the lecture notes yourself.

• To demonstrate that you have read them, you will be 
required to answer one or two simple questions before 
the next lecture is posted.

• The question will probably be at the beginning and you 
just have to e-mail me the answer

mjones@physics.purdue.edu

• To make this easy, please make your subject look like this:

“PHYS53600 Lecture xx questions Your Name”

• These will be part of your assignment grade, maybe 
contributing 10% of your total grade.

mailto:mjones@physics.purdue.edu


More ANNOUNCEMENTS

• Feel free to send me questions about the 
lecture material if there is anything you don’t 
understand.  I’m happy to give more 
explanation (and I’m soooo bored.)

• Send me e-mail if you think it would be useful 
to arrange a time as a class to have a time 
where you can ask questions by video.



LECTURE 24 QUESTIONS

1. Some time before the final exam, do you want to 
arrange for a Webex meeting where everyone has 
the opportunity to ask questions about the 
lecture notes or other material in the course?

2. For-profit companies often pay thousands of 
dollars per year to use FPGA design tools but the 
same tools are often given away for free for 
academic/research use.

Why do you suppose that is?



Designing with Discrete Logic Circuits

• Many of the digital circuits we have discussed so 
far exist as discrete integrated circuits.

• They usually (but not always) require designing 
and fabricating a printed circuit board to be used 
reliably.

• This design process can be time consuming, 
expensive, and error-prone.

• Simple mistakes can be fixed by cutting traces on 
the PCB with a razor blade, or soldering “blue 
wires” where new connections are needed.



Fixing Mistakes on PCB’s

“Blue wire”

Blue wires



Designing with Discrete Logic Circuits

• Often it is useful to budget for two (or more) PCB 
production runs
– First, a small number of prototype boards to find and fix 

mistakes
– Second, a larger number of boards with a MUCH higher 

chance of having no mistakes
– Hopefully you don’t need a third batch, but sometimes it’s 

inevitable

• This process can be expensive in several ways
– Design time and expertise required
– Cost to manufacture
– Cost of parts
– Cost to assemble
– Time needed to test, debug, re-design



Alternatives to Discrete Logic Circuits

• It is of great benefit to be able to fix mistakes 
in logic without having to re-manufacture 
anything

• Several ways to achieve this:
– Programmable Logic Arrays

– Field-Programmable Gate Arrays

– Microprocessors/Microcontrollers

• These are general-purpose logic devices that 
can be re-configured after assembly if 
necessary



Programmable Logic Arrays

• First, consider some combinatorial logic
– Use Boolean algebra to reduce any expression to a 

“sum-of-products”

– Example: three-input “exclusive or”
𝑞 = 𝑥 ⊕ 𝑦⊕ 𝑧

= 𝑥 ⋅ ത𝑦 + ҧ𝑥 ⋅ 𝑦 ⊕ 𝑧

= 𝑥 ⋅ ത𝑦 + ҧ𝑥 ⋅ 𝑦 ⋅ ҧ𝑧 + 𝑥 ⋅ ത𝑦 + ҧ𝑥 ⋅ 𝑦 ⋅ 𝑧
= 𝑥 ⋅ ത𝑦 ⋅ ҧ𝑧 + ҧ𝑥 ⋅ 𝑦 ⋅ ҧ𝑧 + (𝑥 ⋅ ത𝑦) ⋅ ( ҧ𝑥 ⋅ 𝑦) ⋅ 𝑧
= 𝑥 ⋅ ത𝑦 ⋅ ҧ𝑧 + ҧ𝑥 ⋅ 𝑦 ⋅ ҧ𝑧 + ҧ𝑥 + 𝑦 ⋅ (𝑥 + ത𝑦) ⋅ 𝑧
= 𝑥 ⋅ ത𝑦 ⋅ ҧ𝑧 + ҧ𝑥 ⋅ 𝑦 ⋅ ҧ𝑧 + ҧ𝑥 ⋅ ത𝑦 ⋅ 𝑧 + 𝑥 ⋅ 𝑦 ⋅ 𝑧



Programmable Logic Arrays

• The original PLA’s (developed in the 1970’s) 
had arrays of AND and OR operations with 
optional inverters at each input.



Programmable Logic Arrays

• The logic could be implemented by “burning fuses” 
that removed parts of the metal interconnect layer in 
the circuit.

• The connections left behind implement the desired 
logic:

𝑥

𝑦

𝑧

ҧ𝑥 ⋅ ത𝑦 ⋅ 𝑧
ҧ𝑥 ⋅ 𝑦 ⋅ ҧ𝑧
𝑥 ⋅ ത𝑦 ⋅ ҧ𝑧
𝑥 ⋅ 𝑦 ⋅ 𝑧

𝑞



Programmable Logic Arrays

• These devices could only be programmed once

• Still, if you got it wrong you could simply replace the 
component on a PCB with a new one

• Newer PLA’s implemented combinatorial logic features in 
their available resources (called “macrocells”)

• These require software to generate the physical 
configuration needed to implement the desired logic

• They also require a programmer to physically “burn in” 
the design.

• Then they are ready for use…

• Newer designs are “Electrically Erasable” and can be 
reconfigured multiple times.



Example: Atmel ATF16V8B 

Things to notice:

1. Power (VCC and GND) pins are in the usual place
2. There is a dedicated CLK input pin
3. There is a dedicated output-enable pin (OE) which is 

active low.
4. There are 8 inputs and 8 outputs
5. They are INEXPENSIVE!   This one costs only 86¢



Example: Atmel ATF16V8B 

• Logic array:

This part is basically the same 
as in the previous example.  
The main difference is that 
now there is an “output logic” 
macrocell:



Example: Atmel ATF16V8B 
• The design software is 

usually free to download 
and install.

• The programming 
interface is standard 
enough that there are 
many third-party 
programmers available

• Usually interface to a PC using USB or some other 
interface.



Complex Programmable Logic Devices

• The same idea has been extended to devices 
that have much more complex logic resources

– Large numbers of inputs/outputs

– Dedicated block memory

– Large numbers of macrocells with sophisticated 
combinatorial/sequential logic

– Dedicated networks for routing of clock signals

• Many are “in-circuit” reprogrammable



Example: Xilinx CoolRunner-II Series

• These often have MANY inputs/outputs

– They typically can have of the order of 100 pins

– Various types of packages (leads on all sides, or 
ball grid arrays)



Example: Xilinx CoolRunner-II Series

• Features: XC2C128 example ($9.05 each)

– Separate core voltage (1.8 volts) and I/O voltages 
(1.5, 1.8, 2.5, 3.3 volts)

– Dedicated pins for programming/debugging

– Sophisticated macrocell architecture:



Field-Programmable Gate Arrays

• These are sort of like CPLD’s, except that they 
download their configuration each time power 
is applied

• These can have very sophisticated resources 
that are available for use:
– High speed serial transceivers

– Clock synthesizer circuits

– Large block memory resources

– Large numbers of macrocells

– Dedicated clock routing fabric



FPGA Example: Xilinx Spartan-3 series

• Example: XC3S400-4FTG256C

– 173 I/O pins

– Core voltage: 1.2 volts

– 896 logic blocks

– 8064 logic elements

– 400,000 logic gates

– 294,912 bits of RAM

– Costs $34.95 each



Hardware Synthesis Tools
• Now we have a new problem:

– The resources are so abundant and sophisticated that 
it is essentially impossible for a human to specify each 
and every interconnection

• Instead we rely on synthesis tools:
– Emphasis on “describing” what we want the hardware 

to accomplish
– This can be done using schematics and elementary 

logic blocks
– More commonly done using a “Hardware Definition 

Language”

• Rely on vendor-supplied software to translate the 
hardware “description” into configuration data



Hardware Synthesis Tools
• Schematic capture using basic logic elements:



Hardware Synthesis Tools

• You can also use libraries of sophisticated 
design elements:

For example, this is an Arithmetic 
Logic Unit (ALU) which could, for 
example, add or subtract the two 
8-bit inputs based on the 
OPCODE inputs.



Hardware Synthesis Tools
• You can also use libraries of sophisticated 

design elements which can be customized 
using the software tools provided.

This is an example of a 
block memory interface.
If you look carefully you can 
see that it has the same 
signals as the dual-port 
RAM we discussed 
previously (address bus, 
data bus, write enable, et…)



Hardware Synthesis Tools

• The important thing to learn is that these 
tools are used to DESCRIBE how the design 
should function

• They are not usually used to SPECIFY how the 
design should function

• There are sophisticated optimization 
algorithms that are used to translate the 
design into the actual implementation



Hardware Constraints

• Equally important is the way in which 
hardware constraints are specified

• These can include

– Which physical pins map to the signals in the 
schematic description

– Timing constraints

• Input constraints: when does data arrive at the inputs?

• Timing constraints: frequencies of internal clock signals

• Output constraints: relative timing of outputs



Hardware Constraints

• The synthesis tools typically perform the following 
steps:
– Logic reduction and mapping to resources
– Placement of resources in configurable logic blocks
– Routing of signals between the resources

• This exercise usually turns into a big minimization 
problem
– Any “solution” that satisfies the constraints is 

considered acceptable

• Relies on detailed simulation and measurement of 
device properties



Hardware Definition Languages

• Eventually, describing everything using 
schematics is no longer efficient

• Today, we usually use high-level languages to 
describe the hardware we want to implement

• Very common examples: Verilog and VHDL

• They resemble programing languages, but 
they are used to describe hardware, not 
algorithms.



Hardware Definition Languages

• The HDL gives the synthesis tools “hints” that 
can be easily mapped into hardware resources

• Example: A simple D latch:



Hardware Definition Language

• Many design elements rely on clock signals to 
synchronize the sampling of data

• Example: An edge-sensitive D-type flip-flop:



Hardware Definition Language

• Here’s a more complex example showing the 
description of block memory:

Interface description

Architecture description



Practical Details

• So suppose you have a problem that can be 
conveniently solved using an FPGA to implement 
all the logic

• It can be very time consuming and expensive to 
design a printed circuit board with an FPGA on it
– Usually needs at least a couple years of practical 

electrical engineering experience

• But you can often BUY something that does most, 
if not all of what you need
– Then you can program it using your custom logic 

design



Demonstration Boards

• Many companies sell “demonstration boards” that 
can be adapted to serve a specific application:



Demonstration Boards



Demonstration Boards

• This can be (but doesn’t have 
to be) plugged into the PCIe 
bus in a PC.

• It provides high-speed 
network interfaces that 
connect directly to the FPGA.



Dedicated FPGA Modules

• You often have to decide whether it is more economical (in terms of 
time and money) to design and build yourself or to just buy already 
existing hardware.

• Especially if you have to pay your own electrical engineer, the net 
expense is often lower when you buy from a company.


