

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

More Information

- Course web page, whereat can be found the syllabus: http://www.physics.purdue.edu/~mjones/phys53600 Spring2020
- Information about the lab will be posted before next Tuesday. Check the web page before you attend the lab.

Circuits

- In general, electrical circuits require
 - A source of energy (electric potential)
 - A path through which current will flow

- What do we want to learn?
 - Current given voltage? Voltage given current?
 - Power dissipated by resistor?

Modeling Physical Systems

- Another common problem is to describe a physical system in terms of ideal circuit elements.
 - We construct a model of the electrical properties of the physical system
 - If the model is reasonably accurate, then we can use it to predict what the system will do under various conditions

Example

 Construct a model for a system that consists of two resistors in series:

- The current through each system will be the same
- The potential difference across each system should be the same.

Example

Potential difference across each resistor:

$$\Delta V_{R_1} = IR_1$$
$$\Delta V_{R_2} = IR_2$$

Total potential difference:

$$\Delta V = I(R_1 + R_2)$$

Example

 The equivalent system can be described using one resistor:

Both systems behave the same in a circuit.

Another Example

Equivalent resistance:

$$R = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = \frac{R_1 R_2}{R_1 + R_2}$$

Both systems behave the same in a circuit.

PRICE BREAK	UNIT PRICE	EXTENDED PRICE
1	0.10000	\$0.10
10	0.04000	\$0.40
25	0.02880	\$0.72
50	0.02200	\$1.10
100	0.01620	\$1.62
250	0.01236	\$3.09
500	0.00990	\$4.95
1,000	0.00729	\$7.29

Product Attributes

ТҮРЕ	DESCRIPTION
Categories	Resistors Through Hole Resistors
Manufacturer	Stackpole Electronics Inc
Series	CF
Packaging	Cut Tape (CT)
Part Status	Active
Resistance	2.2 kOhms
Tolerance	±5%
Power (Watts)	0.25W, 1/4W
Composition	Carbon Film
Features	Flame Retardant Coating, Safety
Temperature Coefficient	0/ -400ppm/°C
Operating Temperature	-55°C ~ 155°C
Package / Case	Axial
Supplier Device Package	Axial
Size / Dimension	0.091" Dia x 0.236" L (2.30mm x 6.00mm)

Digi-Key Part Number	CF14JT2K20CT-ND =	S2.2KCACT-ND 🛅	2.2KADCT-ND 🛅		
Manufacturer Part Number	CF14JT2K20	RNMF14FTC2K20	MFP-25BRD52-2K2		
Manufacturer	Stackpole Electronics Inc	Stackpole Electronics Inc	<u>Yageo</u>		
Image	Carlo .				
Description	RES 2.2K OHM 1/4W 5% AXIAL	RES 2.2K OHM 1/4W 1% AXIAL	RES 2.2K OHM 1/4W 0.1% AXIAL		
Quantity Available 🔞	46,521 - Immediate	83,615 - Immediate	3,122 - Immediate		
Unit Price USD	\$0.10000	\$0.10000	\$0.64000		
Minimum Quantity	1	1	1		
Series	<u>CF</u>	RNMF (Mini)	MFP		
Packaging	Cut Tape (CT) Alternate Packaging	Cut Tape (CT) Alternate Packaging	Cut Tape (CT) Alternate Packaging		
Part Status	Active	Active	Active		
Resistance	2.2 kOhms	2.2 kOhms	2.2 kOhms		
Tolerance	±5%	±1%	±0.1%		
Power (Watts)	0.25W, 1/4W	0.25W, 1/4W	0.25W, 1/4W		
Composition	Carbon Film	Metal Film	Metal Film		
Features	Flame Retardant Coating, Safety	Flame Retardant Coating, Safety	-		
Temperature Coefficient	0/ -400ppm/°C	±50ppm/°C	±25ppm/°C		
Operating Temperature	-55°C ~ 155°C	-55°C ~ 155°C	-55°C ~ 155°C		
Package / Case	Axial	Axial	Axial		
Supplier Device Package	Axial	Axial	Axial		
Size / Dimension	0.091" Dia x 0.236" L (2.30mm x 6.00mm)	0.070" Dia x 0.130" L (1.78mm x 3.30mm)	0.094" Dia x 0.248" L (2.40mm x 6.30mm)		

	Electrical Specifications - CF						
Type/Code	Power Rating	Maximum Working	Maximum Overload	Dielectric Withstanding	Resistance Temperature Coefficient	Ohmic Range (Ω) and Tolerance	
	(Watts) @ 70°C	Voltage (1)	Voltage	Voltage	per Ohmic Range	2%	5%
CF18	0.125 W	250 V	500 V	350 V	< 10 Ω = ±400 ppm/°C	10 - 1 M	1 - 22 M
CF14	0.25 W	350 V	600 V	350 V	10 Ω to 9.99 K Ω = 0 ~ -400 ppm/°C	1 - 1 M	1 - 22 M
CF12	0.5 W	350 V	700 V	600 V	10 K Ω to 99 K Ω = 0 ~ -500 ppm/°C	10 - 1 M	1 - 22 M
CF1	1 W	500 V	1,000 V	600 V	100 K Ω to 999 K Ω = 0 ~ -850 ppm/°C	1 - 1 M	1 - 10 M
CF2	2 W	500 V	1,000 V	600 V	1 M Ω and above = 0 ~ -1500 ppm/°C	1 - 1 M	1 - 10 M

• Temperature coefficient:

$$TC = \frac{1}{R} \frac{\Delta R}{\Delta T}$$

- Real resistors are (small) sources of random noise
- Random thermal motion of charge carriers produces (small) voltage/current fluctuations
- Approximately white noise – power spectral density is approximately constant over a wide frequency range

Example: $R = 50 \Omega$, $\Delta f = 1 \text{ Hz}$, $T = 300 \text{ K} \Rightarrow v_{\text{rms}} = 1 \text{ nV}$

- There are many different types of capacitors constructed using various technologies
- Primary considerations:
 - Voltage rating
 - Capacitance range
 - Polarity (!)
 - Frequency response
 - Operating temperature range
 - Temperature coefficient
 - Size
 - Cost

Example: Aluminum electrolytic capacitor

Short lead/black mark indicates the cathode (more negative terminal). But be careful: Sometimes the mark indicates the anode!

Tantalum capacitor with mark labeling the anode.

Axial Leaded Multilayer Ceramic Capacitors

Aximax, 400, Conformally Coated, Z5U Dielectric, 25 - 250 VDC (Commercial Grade)

Construction

Ceramic capacitors are not polarized

Model for a real capacitor:

$$C = C_0 \cdot (1 + a V + b V^2) \cdot (1 + \alpha (T - T_0) + \beta (T - T_0)^2)$$

Real Voltage Sources

- An ideal voltage source produces a constant potential difference, independent of the current through it
- A chemical battery is not an ideal voltage source

Specifications

Nominal Capacity: 1800 mAh

Nominal Voltage: 3V

Weight: Approximately 18g

Operating Temperature: -40°C - +85°C

Real Voltage Sources

The operating voltage is not constant:

Operating Voltage vs. Discharge Current (voltage at 50% discharge depth)

Real Voltage Sources

Model for a Real Voltage Source

The model is only valid for a specific range of discharge currents, in this case maybe between 300 and 700 mA, and only when the temperature is 20 °C.

Common DC Voltage Sources

 Frequently, only a limited number of DC voltage sources are present in a circuit:

Voltage (V)	Application	
1.2 V	Integrated circuit core voltage	
1.8 V	Low voltage digital circuits	
2.5 V	Digital I/O logic	
3.3 V	Digital logic	
5 V	Analog/digital logic	
12 V	Power distribution, industrial applications	
24 V	Avionics and defense applications	
48 V	Power distribution	
> 50 V	Safety precautions required!	

Voltage Divider Circuit

 A common technique for generating other voltages is with a voltage divider:

Voltage Divider Circuit

 A common technique for generating other voltages is with a voltage divider:

With no load applied, the current through R_1 and R_2 will be

$$I = \frac{V}{R_1 + R_2}$$

Then,

$$\Delta V = IR_2 = \frac{VR_2}{R_1 + R_2}$$

But this is not enough information to solve for R_1 and R_2 uniquely.

Voltage Divider Circuit

• Equivalent circuit:

$$\Delta V = \frac{VR_2}{R_1 + R_2} \qquad Z = \frac{R_1R_2}{R_1 + R_2}$$

This is a very good assignment question!

What about more Complicated Circuits?

- We need a systematic way of analyzing arbitrarily complex circuits
- Calculate the currents that flow in an electric circuit composed of various circuit elements connected by wires.
- The currents will be solutions to a system of (differential) equations
- If the problem is too complicated to solve algebraically, get a computer to solve it numerically

Kirchhoff Loop Rule

- Recall that work done to move a charge q from point a to point b is $W = -q \int_a^b \vec{E} \cdot d\vec{\ell}$
- If a and b are the same point then W=0

Kirchhoff's Node Rule

 The sum of the currents entering a node must equal the sum of the currents leaving.

$$I_1 + I_2 + I_3 + I_4 = 0$$

(at least one of these must be negative)

Circuit Elements

Voltage sources (like batteries):

Make sure you get the sign right!

$$\begin{array}{c|c} & + & - & \\ \hline & V & \end{array} \begin{array}{c|c} & - & \\ \hline & V & \end{array} \begin{array}{c|c} & V_b = V_a - V \end{array}$$

Circuit Elements

Resistors:

The charges lose energy as they are pushed through the resistor.

$$V_b = V_a - IR$$

Make sure you get the sign right!

Find the current in the following circuit:

Step 1: Draw a loop to represent the current.

Which direction? It doesn't matter, but let's ALWAYS pick clockwise to avoid confusion.

Step 2: Apply Kirchhoff's Loop Rule...

 V_1

• Step 3: Solve for *I*...

$$I = \frac{V_1 + V_2}{R_1 + R_2}$$

What if I is negative? Then it means the current flows in the opposite direction.

Step 1: Assign currents to each loop

Step 2: Apply Kirchhoff's Loop rule

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

This is a system of linear equations... write them as a matrix equation:

$$\begin{pmatrix} R_1 + R_2 & -R_2 \\ -R_2 & R_2 + R_3 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

This should *always* be a symmetric matrix.

Kramer's Rule

 This is the "formula" that gives you the solution to a system of linear equations:

$$x = \begin{vmatrix} c_1 \\ a_2x + b_2y = c_2 \end{vmatrix}$$

$$x = \begin{vmatrix} c_1 \\ b_1 \\ c_2 \end{vmatrix} b_2 \begin{vmatrix} c_1 \\ b_2 \end{vmatrix} = \frac{c_1b_2 - c_2b_1}{a_1b_2 - a_2b_1}$$

$$y = \begin{vmatrix} a_1 \\ a_2 \end{vmatrix} c_2 \begin{vmatrix} c_1 \\ c_2 \end{vmatrix} = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$$

$$y = \begin{vmatrix} a_1 \\ a_2 \end{vmatrix} c_2 \begin{vmatrix} c_2 \\ a_1 \\ a_2 \end{vmatrix} = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$$

$$\begin{pmatrix} R_1 + R_2 & -R_2 \\ -R_2 & R_2 + R_3 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

$$I_{1} = \frac{\begin{vmatrix} V_{1} & -R_{2} \\ V_{2} & R_{2} + R_{3} \end{vmatrix}}{\begin{vmatrix} R_{1} + R_{2} & -R_{2} \\ -R_{2} & R_{2} + R_{3} \end{vmatrix}} = \frac{V_{1}(R_{2} + R_{3}) + V_{2}R_{2}}{(R_{1} + R_{2})(R_{2} + R_{3}) - (R_{2})^{2}}$$

$$I_{2} = \frac{\begin{vmatrix} R_{1} + R_{2} & V_{1} \\ -R_{2} & V_{2} \end{vmatrix}}{\begin{vmatrix} R_{1} + R_{2} & -R_{2} \\ -R_{2} & R_{2} + R_{3} \end{vmatrix}} = \frac{V_{2}(R_{1} + R_{2}) + V_{1}R_{2}}{(R_{1} + R_{2})(R_{2} + R_{3}) - (R_{2})^{2}}$$