
Physics 53600

Electronics Techniques for
Research

Spring 2020 Semester
Prof. Matthew Jones

ANNOUNCEMENT

• Obvious changes to the course:
– No in-person lectures: you’ll have to read the lecture notes

yourself

– No more labs: don’t worry about it – your grade will be based
on work done so far

– Remaining assignments will try to cover topics that would have
been explored in the lab

– Second mid-term: simplest to cancel it

– Final exam: I’m not sure what to do about this yet, but I’ll figure
something out.

• Changes to grading scheme:
– Old scheme: Assignments (30%) exams (40%) lab (30%)

– New scheme: Assignments (50%) exams (25%) lab (25%)

ANNOUNCEMENT

• Because there won’t be any in-person lectures, you will
have to read the lecture notes yourself.

• To demonstrate that you have read them, you will be
required to answer one or two simple questions before
the next lecture is posted.

• The question will be somewhere (like maybe at the end?)
and you just have to e-mail me the answer

mjones@physics.purdue.edu

• To make this easy, please make your subject look like this:

“PHYS53600 Lecture xx questions Your Name”

• These will be part of your assignment grade, maybe
contributing 10% of your total grade.

mailto:mjones@physics.purdue.edu

ANNOUNCEMENT

• Remember that you have Assignment #4 due
on Thursday, March 26th.

• Please scan, or somehow generate a PDF file
of your solutions and e-mail them to the
grader

lim185@purdue.edu

• It might be useful to use a standard subject:

“PHYS53600 Assignment #4 Your Name”

mailto:lim185@purdue.edu

LECTURE 18 QUESTION #1

Briefly summarize some of the similarities and
differences of combinatorial and sequential logic

Combinatorial Logic

• So far we have considered combinatorial logic
circuits. These could (in principle) be
constructed from elementary logic gates
(inverters, AND, OR, NAND, NOR, etc…)

• Essentially, these simply evaluate Boolean
algebraic expressions:

LOGIC

𝑖0
𝑖1
𝑖2

𝑖𝑛

𝑜0
𝑜1

𝑜𝑚

Combinatorial Logic

• A characteristic feature of combinatorial logic
is that the outputs depend ONLY on the
inputs.

• This property is easy to break…

• Here is a simple example where this is not the
case:

• Question: what is the output, as a function of
the input?

input
output

Sequential Logic

• We can’t analyze this example using Boolean
algebra because there is no solution:

𝑜 = 𝑜 ∙ 𝑖
= ҧ𝑜 + ҧ𝑖

• Consider two cases:

– If the input is 0, then the output is always 1

– If the input is 1 then then the algebra simplifies to
𝑜 = ҧ𝑜

– This is a contradiction – the output is undefined
given the current assumptions.

Sequential Logic

• Practical logic circuits can be very fast, but not
infinitely fast.

• It takes time for the input stimulus to
propagate through the circuit and to
ultimately affect the output.

• In practice, this would form some type of
oscillator circuit:

time

Oscillator Circuits

• In practice, this can be taken advantage of, but
the problem is that the frequency can be quite
unpredictable.

• You can slow down the response by coupling
the output to the input using resistors and
capacitors.

• The capacitors need to charge up to the
appropriate voltage before the output will
switch to the opposite state.

Oscillator Circuits

There are lots of different configurations but they have some common features.
• In this case, both NAND gates are configured as inverters
• The combination of resistors and capacitors slows down the switching

frequency
• The crystal acts like a resonant circuit that has a low impedance at a very

specific frequency (in this case 4 MHz)
• It might be tricky to find the right component values to make a circuit like this

work, but once it does, it can provide a VERY stable 4 MHz square wave output.

Sequential Logic

• By providing feedback between the output an
the input of a combinatorial logic circuit, the
output will now depend on:

– The inputs

– The past history of the output

• We can exploit these features to build some
useful elementary sequential logic elements

Sequential Logic Circuits

• A simple example is the “Set-Reset Flip-Flop”
circuit:

• First suppose that 𝑄 = 1, 𝑆 = 1, 𝑅 = 1

– Then ത𝑄 = 𝑅 ∙ 𝑄 = 0

• Next, suppose that 𝑄 = 0, 𝑆 = 1, 𝑅 = 1

– Then ത𝑄 = 𝑅 ∙ 𝑄 = 1

Sequential Logic Circuits

• A simple example is the “Set-Reset Flip-Flop”
circuit:

• Now suppose that 𝑆 = 0, 𝑅 = 1

– Then 𝑄′ = 𝑆 ∙ ത𝑄 = ҧ𝑆 + 𝑄

– If 𝑄 = 0, then 𝑄′ = 1

– If 𝑄 = 1, then 𝑄′ remains unchanged

Sequential Logic Circuits

• A simple example is the “Set-Reset Flip-Flop”
circuit:

• Next suppose that 𝑆 = 1, 𝑅 = 0

– Then ത𝑄′ = 𝑅 ∙ 𝑄 = ത𝑅 + ത𝑄

– If ത𝑄 = 0, then ത𝑄′ = 1

– If ത𝑄 = 1, then ത𝑄′ remains unchanged

Clock Inputs

• We often want to sample an input at a specific
time.

• This is implemented by adding a “clock” input

• The outputs don’t change until Clk=1

J-K Flip Flop

• It doesn’t matter how this circuit is
implemented. All that matters is how the
outputs respond to the inputs:

• When J=K=1, the output will toggle when
Clk=1

𝑱 𝑲 𝐶𝑙𝑘 𝑄 𝑸′

X X 0 X Q

0 0 1 X Q

0 1 1 X 0

1 0 1 X 1

1 1 1 X ത𝑄

LOGIC ത𝑄

𝑄

𝐾

𝐽

𝐶𝑙𝑘

Edge-Sensitive Clock Inputs

• Outputs change only when the clock input
makes the transition from 0 to 1.

• This is referred to as the “rising clock edge”

• Nothing changes on the “falling clock edge”

• The edge-sensitive nature of the clock input is
indicated by a little wedge thing:

LOGIC ത𝑄

𝑄

𝐾

𝐽

𝐶𝑙𝑘

The D Flip-Flop

• Using these concepts, we can describe a very
simple sequential logic element:

• We say that the input is “latched” on the rising
edge of the clock input.

LOGIC 𝑄

𝐷

𝐶𝑙𝑘

𝑫 𝐶𝑙𝑘 𝑄 𝑸′

0 X 0

1 X 1

X X Q

Asynchronous Inputs

• Sometimes we need to set the state of the
output independent of the clock or D inputs

• Preset and Clear inputs can be asynchronous
with the clock input:

LOGIC 𝑄

𝐷
𝐶𝑙𝑘

𝑃𝑟𝑒𝑠𝑒𝑡
𝐶𝑙𝑒𝑎𝑟

𝑫 𝐶𝑙𝑘 Preset Clear 𝑄 𝑸′

0 0 0 X 0

1 0 0 X 1

X 0 0 X Q

X X 1 0 X 1

X X 0 1 X 0

X X 1 1 X invalid

Examples

• 74LS109: Dual J-K edge-triggered flip flop with
preset and clear:

Examples

• 74LS74: Dual D Edge-triggered flip-flop with
preset and clear

Examples

• Sometimes it is useful to latch many inputs on
the same clock edge.

• 74LS273: Octal D-type flip-flop with clear

Practical Limitations

• For the D input to be sampled correctly, it
must be stable for a minimum period of time
before the clock edge:

Setup time, 𝑡𝑆𝑈
• For the D input to be sampled correctly, it

must remain stable for a minimum period of
time after the clock edge:

Hold time, 𝑡𝐻

Setup and Hold Time

• Setup time: 20 ns

• Hold time: 5 ns

• These are very old devices that are used only
for illustration.

Modern Example (10 GHz)

