

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

ANNOUNCEMENT!

- Due to COVID-19 concerns, the syllabus for the course will need to be modified somewhat
- After spring break, the course will continue, but it will be *ONLINE*...
- Please refer to the course web page <u>http://www.physics.purdue.edu/~mjones/phys53600_Spring2020/</u>

for upcoming announcements.

ANNOUNCEMENT!!!

- What the rest of the course might look like:
 - Lecture notes will continue to be posted online
 - Communication with the class will be via e-mail
 - Perhaps we can do without the lectures?
 - Maybe one or two assignment questions associated with each lecture?
 - Skip the second mid-term (grading scheme will be modified accordingly)
 - Lab grade will be based on work performed so far
 - Still don't know what to do about the final... stay tuned.

Digital Electronics

- Fundamental unit of information is the Boolean digit (bit) which can either be 0 or 1
- Combinatorial logic circuits perform Boolean algebraic operations

– Inverter:
$$Q = \overline{D}$$

- NOR gate: $Q = \overline{A + B}$

• Other functions can be constructed from these (or similar) elementary operations

Basic Logic Gates

• Inverter:

• AND:

• OR:

Q = A + B

- NAND:
- NOR:

 $Q = \overline{A \cdot B}$

 $Q = \overline{A + B}$

Other Logic Types

- Although Boolean digits can be represented by voltage levels, these are still fundamentally analog circuits
- Some configurations will simply not work:

• This will always have both logic levels connected together at the outputs

Other Logic Types

- We can exploit the analog nature of logic circuits to resolve these possible ambiguities
- Tri-state logic: 0, 1 or Z (high impedance)

$$D \longrightarrow Q = \begin{cases} D \text{ if } E = 1 \\ Z \text{ if } E = 0 \end{cases}$$

• Open-collector logic: 0 or Z (high impedance)

Applications of other Logic Types

• Multiple drivers of a common net:

 $Q = D_i$ when $E_i = 1$ and all other enables are 0 (Make sure that no two enables are 1 simultaneously)

Application of other Logic Types

- You can buy integrated circuits that contain these discrete logic gates
- They can be very useful when used individually
- They are not often used to construct complicated logic circuits

• SN74LS04: Hex inverter

logic diagram (positive logic)

1Y

2Y

3Y

4Y

INPU	JTS	OUTPUT		
А	в	Y		
н	н	н		
L L	×	L		
х	L	L		

logic diagram (positive logic)

• 74LS02: Quad NOR gate

SN5402 . . . J PACKAGE SN54LS02, SN54S02 . . . J OR W PACKAGE SN7402 . . . N PACKAGE SN74LS02, SN74S02 . . . D OR N PACKAGE

(TOP VIEW)

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
A	В	Y
н	x	L
x	н	L
L L	L	н

• 74LS05: Hex inverter with open-collector outputs

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT) TEST COM		TEST CONDITIONS		түр	MAX	UNIT
t PLH				0. 455	2	5	7.5	
t _{PHL}		Y	RL = 280 Ω	CL = 15 pF	2	4.5	7	115
tPLH .				0. 505		7.5		
t _{PHL}				CL = 50 pF		7		ns

• 74LS125, 74LS126: Quad buffer with 3-state outputs

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices Output is disabled when G=1 (LS125) Output is disabled when G=0 (LS126)

Switching Characteristics

• The speed of logic gates can be defined using several timing measures:

SETUP AND HOLD TIMES

Important timing parameters:

- Propagation delay
- Setup time
- Hold time

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

Timing Characteristics

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	TEST CONDITIONS			SN54125 SN74125			SN54126 SN74126		
			MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH	R ₁ = 400 O	Cr = 50 pE		8	13		8	13	05
^t PHL		of contra		12	18		12	18	113
^t PZH	Ri = 400.0	C) = 50 pE		11	17		11	18	05
tPZL	112 - 400 32	0 <u> </u>		16	25		16	25	115
^t PHZ	R. = 400 O	C ₁ = 5 pE		5	8		10	16	05
^t PLZ	11 - 100 sz,	or - o b		7	12		12	18	

 $t_{\text{PLH}} \text{ is the propagation delay for a low-to-high transition} t_{\text{PHL}} \text{ is the propagation delay for a high-to-low transition} t_{\text{PZH}} \text{ is the propagation delay for a high-impedance to high transition} t_{\text{PZL}} \text{ is the propagation delay for a high-impedance to low transition} t_{\text{PHZ}} \text{ is the propagation delay for a high to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a high to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} transition} t_{\text{PLZ}} \text{ is the propagation delay for a low to high-impedance transition} transition} transition} t_{\text{PLZ}} \text{ is the propagation} transition} transition} t_{\text{PLZ}} \text{ is the propagation} transition} transition} transition} t$

 t_{SU} is the "setup time": time input must remain stable before an event t_{H} is the "hold time": time input must remain stable after an event

Other Logic Functions

• Logic with more than 2 inputs:

(positive logic) Y = A·B·C·D or Y = $\overline{A} + \overline{B} + \overline{C} + \overline{D}$

Selectors/Multiplexers

- Beyond the basic Boolean algebraic operations, several logic functions can be described by their applications
- A selector will output one (out of many) inputs based on a set of control inputs

Selectors/Multiplexers

• 74LS253: Dual 4-to-1 line data selectors (3-state outputs)

FUNCTION TABLE

SEL	ECT PUTS		DATA	INPUTS		OUTPUT CONTROL	OUTPUT
В	A	CO	C1	C2	C3	G	Y
X	х	×	х	х	Х	н	z
L.	L	L	×	X	х	L	L
L	L	н	×	×	х	L	н
L	н	×	L	х	х	L	L
L	н	×	н	×	х	L	н
н	L	X	×	L	х	L	L
н	L	×	×	н	х	L	н
н	н	×	×	х	L	L	L
н	н	X	×	х	н	L	н

Address inputs A and B are common to both sections.

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

bers shown are for D, J, N, and W packages.

Decoders/Demultiplexers

- Decoders route one input to exactly one (of several) possible outputs
- Inputs are the binary address of the selected output

а	b	Α	В	С	D
0	0	F	0	0	0
0	1	0	F	0	0
1	0	0	0	F	0
1	1	0	0	0	F

Decoders/Demultiplexers

• 74LS138: 3 to 8-line decoder/demultiplexer

	IN	IPUT	S							_		
ENA	BLE	S	ELEC	т					τŲΙ	Þ		
G1	Ģ 2*	С	В	Α.	YO	¥1	Y2	¥3	¥4	Y5	Y6	¥7
X	н	x	х	х	н	н	н	н	н	н	Η	н
L	x	×	х	x	н	н	н	н	н	н	н	н
н	Ł	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	L	н	н	н	н	н	н
н	Ł	L	н	L	н	н	L	н	н	н	н	н
н	L	L.	н	н	н	н	н	L	н	н	н	н
н	L	н	L,	L	н	н	н	н	L	н	н	н
н	L	н	L	н	н	н	н	н	н	L	н	н
н	Ł	н	н	L	н	н	н	н	н	н	L	н
н	L	н	н	н	н	н	н	н	н	н	н	L

 $\overline{G2} = \overline{G2A} + \overline{G2B}$ H = high level, L = low level, X = irrelevant logic diagram and function table

'LS138, SN54S138, SN74S138A

Pin numbers shown are for D, J, N, and W packages.

This device sets one input LOW based on the select and enable inputs. Otherwise, the inputs are HIGH.

Example Applications

 Outputs of tri-state logic can be connected together, but only one output should be driven at a time

Special Applications

• 74LS47: Binary to 7-segment LED driver

Priority Encoder

• 74LS147: 10 to 4-line priority encoder

H = high logic level, L = low logic level, X = irrelevant

Binary output encodes the index of the highestnumbered input channel that is in a low state

Arithmetic/Logic Units

• 74AS181: Performs various logic operations

			CTION			ACTIVE-HIGH DATA					
	-	SELE			M = H	M = L; ARITHME	ETIC OPERATIONS				
s	3	S2	S 1	S 0	LOGIC FUNCTIONS	C _n = H (no carry)	C _n = L (with carry)				
	_	L	L	L	F = Ā	F = A	F = A PLUS 1				
1	_	L	L	н	$F = \overline{A + B}$	F = A + B	F = (A+ B) PLUS 1				
1	_	L	Н	L	F = ĀB	$F = A + \overline{B}$	F = (A + B) PLUS 1				
1	_	L	Н	Н	F = 0	F = MINUS 1 (2's COMPL)	F = ZERO				
1	_	н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1				
1	_	н	L	Н	F = B	$F = (A + B) PLUS A\overline{B}$	F =(A + B) PLUS AB PLUS 1				
1	_	н	Н	L	F = A ⊕ B	F = A MINUS B MINUS 1	F = A MINUS B				
1	_	н	Н	н	$F = A\overline{B}$	F = AB MINUS 1	$F = A\overline{B}$				
1	ł	L	L	L	$F = \overline{A} + B$	F = A PLUS AB	F = A PLUS AB PLUS 1				
1	ł	L	L	Н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1				
1	ł	L	Н	L	F = B	$F = (A + \overline{B}) PLUS AB$	$F = (A + \overline{B}) PLUS AB PLUS 1$				
1	ł	L	Н	Н	F = AB	F = AB MINUS 1	F = AB				
1	ł	Н	L	L	F = 1	F = A PLUS A [†]	F = A PLUS A PLUS 1				
1	ł	н	L	н	$F = A + \overline{B}$	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1				
1	ł	н	Н	L	F = A + B	$F = (A + \overline{B}) PLUS A$	F =(A + B) PLUS A PLUS 1				
1	ł	н	Н	Н	F = A	F = A MINUS 1	F = A				

H H H H F = A F = A [†]Each bit is shifted to the next more significant position.

SN54AS181B . . . JT OR JW PACKAGE

(re-)Programmable Logic Arrays

- Devices with many inputs and/or outputs that can be re-configured to perform arbitrary logic functions.
- Configuration can be programmed once, or reprogrammed when required
- Requires synthesis design tools to generate configuration data
- Examples: Xilinx, Altera (now Intel)

(re-)Programmable Logic

• A simple way to think of these is like a readonly memory device:

• There needs to be a way to configure the memory before the device is put into use.

Combinatorial vs Sequential Logic

- So far, all the devices we have considered perform Boolean algebraic operations.
- The output is simply a function of the input
- They do not store information
- Their output does not depend on the past history of the inputs
- Sequential logic is based on the ability to store information and change it as required
- The combination of combinatorial and sequential logic is the basis for most digital architectures of arbitrary complexity

