

Physics 53600 Electronics Techniques for Research

Spring 2020 Semester

Prof. Matthew Jones

Digital Electronics

- So far, we have analyzed transistors that are biased so that they are in the *active region*
- They act as voltage or current controlled current sources

$$I_D = I_{DSS} \left(1 + \frac{V_G}{|V_P|} \right)^2$$
$$I_C = \beta I_B$$

• But transistors can also be used like a switch...

• Typical common emitter amplifier:

- When $V_b < V_{be} \approx 0.7 V$, the base-emitter junction is not forward biased and no current flows.
- When $V_b > V_{be}$, the base-emitter junction is forward biased and a large current flows.

- When no current flows through R_C , $V_o = V_{CC}$
- When a large current flows through R_C , then $V_o \approx 0V$

- Because $R_E \approx 0$, the gain is very large
- The transition between conducting and nonconducting occurs very rapidly
- This circuit acts as an "inverter"

Logical Values as Voltages

- Voltages in this circuit can be anything from ground potential to V_{CC} .
- Nevertheless, we can use voltages to represent logical values of true and false.
- One (of many) conventions (TTL):

$$V_{in} < 0.8 V = V_{IL} \text{ (false)}$$
$$V_{in} > 2 V = V_{IH} \text{ (true)}$$

 The region between 0.8 and 2 V should be avoided except during transitions between true and false.

Another Digital Circuit

- Suppose both inputs are at ground potential.
- Then current is pulled out of the bases of Q3 and Q4
- Q3 and Q4 don't conduct any current
- The base of Q5 is at ground potential and the output is at V_{cc}

Another Digital Circuit

- Suppose either inputs is at V_{cc}
- Then current flows into the base of Q3 or Q4
- Current flows through R4 which raises the voltage at the base of Q5
- The output is pulled to near ground potential

NOR Gate

 This circuit performs the following logical operation where 0 = false (ground), 1 = true (V_{CC})

NOR gate

Α	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

OR Gate

• If we add an inverter at the output we get an OR gate:

Boolean Algebra

- Boolean algebra uses variables that can only be true/false or 1/0.
- The "OR" operation is denoted with a plus "+"
- The "AND" operation is denoted with a dot "."
- The negation operation is denoted with a bar above the expression
- This can be much easier than writing out a truth table for all possible inputs

Boolean Algebra

• De Morgan's laws:

$$\overline{\overline{A \cdot B}} = \overline{A} + \overline{B}$$
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

 We can use these to make other logic operations using NOR gates and inverters

$$A \cdot B = \overline{\overline{A} \cdot \overline{B}}$$
$$= \overline{\overline{A} + \overline{B}}$$

Combinatorial Logic

 With a sufficient number of inverters and NOR gates, arbitrarily complex Boolean algebraic expressions can be implemented

$$o_j = f_j(i_1, i_2, \dots, i_N)$$

• Multiple outputs (1, ..., *M*) can be functions of multiple inputs (1, ..., *N*)

- Digital representation of information has advantages:
 - Immunity to noise
 - Arbitrarily complex (more or less) operations
 - Formal analysis techniques (other than differential equations)
- Boolean logic represents two possible states by a single voltage level (one "bit")
- More complex information can be represented by multiple "bits"

• Unsigned integers (non-negative integers):

n	b ₂	b ₁	b ₀
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

• In general, $n = \sum_k b_k 2^k$

• How many bits are needed?

$$N = \lfloor \log_2 n_{max} \rfloor + 1$$
$$\lfloor x \rfloor = \text{largest integer} \le x$$

• Example:

- To represent integers
$$\leq 15$$
,
 $\log_2 15 = \frac{\log_e 15}{\log_e 2} = 3.907$
- Therefore, $N = 4$

$n_{max} = 2^N - 1$	N
15	4
255	8
1023	10
65,535	16
1,048,575	20
2,147,483,648	31
9,223,372,036,854,775,807	63

- How to represent negative numbers?
- One's compliment:
 - Suppose n = 0100
 - Then $\overline{n} = 1011$ (one's compliment)
- Two's compliment
 - Suppose n = 0100. Then $-n = \bar{n} + 1 = 1100$
- Example: 4 + (-4) = 0 0100 11000000

• More complicated example: n = -105

- 105 needs 7 bits:
$$[\log_2 105] + 1 = 7$$

 $105 = 64 + 32 + 8 + 1$
 $= 2^6 + 2^5 + 2^3 + 2^0$

- One bit is needed for the minus sign
- Binary representation:

 $105 = \underline{0}1101001$

– One's compliment:

 $\overline{105} = \underline{1}0010110$

– Two's compliment:

 $-105 = \underline{1}0010111$

Binary Addition

• Addition can be performed using combinatorial logic

а	b	c (carry in)	sum	carry
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Floating Point Representation

- Consider an arbitrary decimal fraction: $k = 1.38065 \times 10^{-23}$
- This number has three parts:
 - An algebraic sign: (+)
 - The mantissa: 1.38065
 - The exponent: -23
- The binary representation is similar:

$$2^{-76} = 1.32349 \times 10^{-23}$$

 $2^{-77} = 6.6174449 \times 10^{-24}$
 $2^{-78} = 3.3087225 \times 10^{-25}$

Floating Point Representation

- $\begin{aligned} k &= 2^{-76} + 2^{-81} + 2^{-83} + 2^{-84} + 2^{-89} + \cdots \\ &= (1_b 0000101100001111) \times 2^{-76} \end{aligned}$
- In this case, the exponent can be represented by an 8-bit integer.
- Instead of using 2's compliment representation for the exponent we can just add a "bias" to all exponents to make them positive integers.
 - If the bias was chosen to be 127 then the exponent would be (-76) + 127 = 51

Floating Point Numbers

- Notice that in this representation, there is always a 1 to the left of the binary point
- We don't need to store this 1 because it is always present in any number
- Representing $k = 1.38065 \times 10^{-23}$:

Floating Point Numbers

• Reversing the process:

The true exponent is

$$e = 51 - 127 = -76$$

Then,

$$k = (2^{0} + 2^{-5} + 2^{-7} + 2^{-8} + 2^{-13} + \dots) \times 10^{-76}$$

= 1.3806606 × 10⁻²³

- Better accuracy can be achieved by using more than 16-bits in the mantissa
- IEEE 754 standard:

name	exponent	bias	mantissa	sign
binary32	8 bits	127	23 bits	1 bit
binary64	11 bits	1023	52 bits	1 bit

Representing Text Characters

- This requires defining a "code" which maps each character to a unique integer.
- There is no unique way to do this and historically, there are several codes that have been defined

Character	ASCII	Radix 50	EBCDIC
"@"	64	-	124
"A"	65	1	193
"В"	66	2	194
"Z"	90	26	233

Representation of Characters

- ASCII: "American Standard Code of Information Interchange"
- Radix 50: Could store 3 characters in 16 bits (ASCII could store only 2)
- EBCDIC: "Extended Binary Coded Decimal Interchange Code"
- In practice, ASCII is by far the most common today.

Representation of Characters

- ASCII works well for Latin characters, but other languages have more than 255 characters.
- Unicode uses 16 bits to represent a character

Hindu-Arabic Numeral	Chinese/ Japanese numeral	Unicode
1:	—	一
2:	=	二
3:	Ξ	三
4:	四	四
5:	五	五
6:	六	六
7:	t	七
8:	八	八
9:	九	九
10:	+	十
11:	+	十一
12:	+=	十二
20:	<u>_+</u>	二十
50:	五十	五十
100:	百	百 (Japanese: hyaku, Chinese: bai)
1000:	Ŧ	千 (Japanese: sen, Chinese: qian)
10,000:	Б	万 (Japanese: man)
10,000:	萬	萬 (Chinese: wan)
10 ⁸ :	億	億 (Japanese: oku)
10 ⁸ :	亿	亿 (Chinese: yi)
10 ¹² :	۶Ľ	兆 (Japanese: chou, Chinese: jhao)