
Physics 53600

Electronics Techniques for
Research

Spring 2020 Semester
Prof. Matthew Jones

Digital Electronics

• So far, we have analyzed transistors that are
biased so that they are in the active region

• They act as voltage or current controlled
current sources

𝐼𝐷 = 𝐼𝐷𝑆𝑆 1 +
𝑉𝐺
𝑉𝑃

2

𝐼𝐶 = 𝛽𝐼𝐵
• But transistors can also be used like a switch…

Transistors as a Switch

• Typical common emitter amplifier:

• When 𝑉𝑏 < 𝑉𝑏𝑒 ≈ 0.7 𝑉, the base-emitter
junction is not forward biased and no current
flows.

• When 𝑉𝑏 > 𝑉𝑏𝑒, the base-emitter junction is
forward biased and a large current flows.

𝑅𝐵

𝑉𝑏
𝐼𝑐

Transistors as a Switch

• When no current flows through 𝑅𝐶, 𝑉𝑜 = 𝑉𝐶𝐶
• When a large current flows through 𝑅𝐶, then
𝑉𝑜 ≈ 0𝑉

𝑅𝐵

𝑉𝑏

𝑉𝐶𝐶

𝑅𝐶

𝑉𝑜

Transistors as a Switch

Transistors as a Switch

• Because 𝑅𝐸 ≈ 0, the gain is very large
• The transition between conducting and non-

conducting occurs very rapidly
• This circuit acts as an “inverter”

Logical Values as Voltages

• Voltages in this circuit can be anything from
ground potential to 𝑉𝐶𝐶.

• Nevertheless, we can use voltages to represent
logical values of true and false.

• One (of many) conventions (TTL):

𝑉𝑖𝑛 < 0.8 𝑉 = 𝑉𝐼𝐿 (false)

𝑉𝑖𝑛 > 2 𝑉 = 𝑉𝐼𝐻 (true)

• The region between 0.8 and 2 V should be
avoided except during transitions between true
and false.

Logic Families

𝑉𝑖

𝑉𝐶𝐶

𝑉𝑜

𝑉𝐷𝐷

𝑉𝑖
𝑉𝑜

𝑉𝐼𝐻 = 2.0 𝑉
𝑉𝐼𝐿 = 0.8 𝑉

𝑉𝑂𝐻 = 3.3 𝑉
𝑉𝑂𝐿 = 0.35 𝑉

𝑉𝐼𝐻 = 3.7 𝑉
𝑉𝐼𝐿 = 1.3 𝑉

𝑉𝑂𝐻 = 4.7 𝑉
𝑉𝑂𝐿 = 0.2 𝑉

TTL logic CMOS logic

Another Digital Circuit

• Suppose both inputs are at ground potential.
• Then current is pulled out of the bases of Q3 and Q4
• Q3 and Q4 don’t conduct any current
• The base of Q5 is at ground potential and the output is at VCC

• Suppose either inputs is at VCC

• Then current flows into the base of Q3 or Q4
• Current flows through R4 which raises the voltage at the base

of Q5
• The output is pulled to near ground potential

Another Digital Circuit

NOR Gate

• This circuit performs the following logical
operation where 0 = false (ground), 1 = true (VCC)

OR Gate

• If we add an inverter at the output we get an
OR gate:

Boolean Algebra

• Boolean algebra uses variables that can only
be true/false or 1/0.

• The “OR” operation is denoted with a plus “+”

• The “AND” operation is denoted with a dot “·”

• The negation operation is denoted with a bar
above the expression

• This can be much easier than writing out a
truth table for all possible inputs

Boolean Algebra

• De Morgan’s laws:
𝐴 ∙ 𝐵 = ҧ𝐴 + ത𝐵
𝐴 + 𝐵 = ҧ𝐴 ∙ ത𝐵

• We can use these to make other logic
operations using NOR gates and inverters

𝐴 ∙ 𝐵 = 𝐴 ∙ 𝐵

= ҧ𝐴 + ത𝐵

ത𝐵

𝐴

𝐵

ҧ𝐴

ҧ𝐴 + ത𝐵 = 𝐴 ∙ 𝐵

Combinatorial Logic

• With a sufficient number of inverters and NOR
gates, arbitrarily complex Boolean algebraic
expressions can be implemented

𝑜𝑗 = 𝑓𝑗(𝑖1, 𝑖2, … , 𝑖𝑁)

• Multiple outputs (1,… ,𝑀) can be functions of
multiple inputs (1,… , 𝑁)

Digital Representation of Information

• Digital representation of information has
advantages:
– Immunity to noise

– Arbitrarily complex (more or less) operations

– Formal analysis techniques (other than differential
equations)

• Boolean logic represents two possible states
by a single voltage level (one “bit”)

• More complex information can be represented
by multiple “bits”

Digital Representation of Information

• Unsigned integers (non-negative integers):

• In general, 𝑛 = σ𝑘 𝑏𝑘2
𝑘

n b2 b1 b0

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Digital Representation of Information

• How many bits are needed?
𝑁 = log2 𝑛𝑚𝑎𝑥 + 1

𝑥 =largest integer ≤ 𝑥

• Example:

– To represent integers ≤ 15,

log2 15 =
log𝑒 15

log𝑒 2
= 3.907

– Therefore, 𝑁 = 4

Digital Representation of Information

𝒏𝒎𝒂𝒙 = 𝟐𝑵 − 𝟏 𝑵

15 4

255 8

1023 10

65,535 16

1,048,575 20

2,147,483,648 31

…

9,223,372,036,854,775,807 63

Digital Representation of Information

• How to represent negative numbers?

• One’s compliment:
– Suppose 𝑛 = 0100

– Then ത𝑛 = 1011 (one’s compliment)

• Two’s compliment
– Suppose 𝑛 = 0100. Then −𝑛 = ത𝑛 + 1 = 1100

• Example: 4 + −4 = 0
0100
1100
0000

Digital Representation of Information

• More complicated example: 𝑛 = −105
– 105 needs 7 bits: log2 105 + 1 = 7

105 = 64 + 32 + 8 + 1
= 26 + 25 + 23 + 20

– One bit is needed for the minus sign

– Binary representation:
105 = 01101001

– One’s compliment:

105 = 10010110

– Two’s compliment:
−105 = 10010111

Binary Addition

• Addition can be performed using
combinatorial logic

a b c (carry in) sum carry

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Floating Point Representation

• Consider an arbitrary decimal fraction:
𝑘 = 1.38065 × 10−23

• This number has three parts:
– An algebraic sign: (+)
– The mantissa: 1.38065
– The exponent: -23

• The binary representation is similar:
2−76 = 1.32349 × 10−23

2−77 = 6.6174449 × 10−24

2−78 = 3.3087225 × 10−25

…

Floating Point Representation

𝑘 = 2−76 + 2−81 + 2−83 + 2−84 + 2−89 +⋯
= 1𝑏0000101100001111 × 2−76

• In this case, the exponent can be represented by
an 8-bit integer.

• Instead of using 2’s compliment representation
for the exponent we can just add a “bias” to all
exponents to make them positive integers.

– If the bias was chosen to be 127 then the exponent
would be (-76) + 127 = 51

Floating Point Numbers

• Notice that in this representation, there is
always a 1 to the left of the binary point

• We don’t need to store this 1 because it is
always present in any number

• Representing 𝑘 = 1.38065 × 10−23:

0|00110011|0000101100001111

s exponent mantissa

+ 51 1b0000101100001111

Floating Point Numbers
• Reversing the process:

The true exponent is

𝑒 = 51 − 127 = −76

Then,
𝑘 = 20 + 2−5 + 2−7 + 2−8 + 2−13 +⋯ × 10−76

= 1.3806606 × 10−23

• Better accuracy can be achieved by using more than
16-bits in the mantissa

• IEEE 754 standard:

name exponent bias mantissa sign

binary32 8 bits 127 23 bits 1 bit

binary64 11 bits 1023 52 bits 1 bit

Representing Text Characters

• This requires defining a “code” which maps
each character to a unique integer.

• There is no unique way to do this and
historically, there are several codes that have
been defined

Character ASCII Radix 50 EBCDIC

“@” 64 - 124

“A” 65 1 193

“B” 66 2 194

…

“Z” 90 26 233

Representation of Characters

• ASCII: “American Standard Code of
Information Interchange”

• Radix 50: Could store 3 characters in 16 bits
(ASCII could store only 2)

• EBCDIC: “Extended Binary Coded Decimal
Interchange Code”

• In practice, ASCII is by far the most common
today.

Representation of Characters

• ASCII works well
for Latin
characters, but
other languages
have more than
255 characters.

• Unicode uses 16
bits to represent a
character

