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Operational Amplifiers

• Basic equation: 𝑣𝑜𝑢𝑡 = 𝐴0 𝑣+ − 𝑣− , 𝐴0 ≫ 1

• Simplified design rules:

1. Inputs draw negligible current

2. Output produces whatever voltage will make 𝑣+ = 𝑣−

• Negative feedback:

– Reduces intrinsic gain

– Increases bandwidth
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Operational Amplifiers

• Inverting amplifier:

• Non-inverting amplifier:
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Operational Amplifiers

• Input impedance:

𝑣− = 0 so 𝑖𝑅1 = 𝑣𝑖𝑛/𝑅1
Input impedance is just 𝑅1

• Output impedance depends on the device in 
question.  It also depends on the gain and the 
frequency.
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Operational Amplifiers

• For low frequencies,
𝑅𝑜𝑢𝑡 ≲ 100 Ω

• This is dynamically adjusted by the feedback loop

• Frequency response:

𝐴0Open loop gain

𝐴𝑉Closed loop gain
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GBP = 1 MHz
If 𝐴𝑉 = 10 then BW = 100 kHz



Operational Amplifiers
• Summing amplifier:

𝑣+ = 0
𝑣− = 0

• No current flows into the inverting input.
𝑣𝑜𝑢𝑡 = − 𝑖1 + 𝑖2 + 𝑖3 𝑅𝐹
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Operational Amplifiers

• If 𝑅1 = 𝑅2 = 𝑅3 ≡ 𝑅 then

𝑣𝑜𝑢𝑡 = −
𝑅𝐹
𝑅

𝑣1 + 𝑣2 + 𝑣3

• If 𝑅1, 𝑅2, 𝑅3 are large compared with the 
output impedance of any non-ideal voltage 
sources attached to 𝑣1, 𝑣2, 𝑣3 then this will be 
a good approximation.



Subtracting Amplifier

• Connect an inverting amplifier to a summing 
amplifier:

• If 𝑅1 = 𝑅2 and 𝑅3 = 𝑅4 then
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Non-inverting Summing Amplifier
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Sensitivity Analysis
• Remember that resistors have finite tolerance 

(eg, 5%, 1%, 0.1%)

• How sensitive is the output to their values?

• Repeat the DC operating point analysis with 
randomly sampled resistor values

• In LTspice, one can specify the random tolerance of 
resistors using {mc(R,tolerance)}:

• Spice directive:

.step param run 1 100 1

(runs 100 iterations)



Sensitivity Analysis

Tolerance of all resistors set to 1%



Sensitivity Analysis

Worst case scenarios: 0.985 𝑉 < 𝑣𝑜𝑢𝑡 < 1.008 𝑉 (2.3% variation)



More Op-Amp Circuits

• Differentiator:

𝑣+ = 0
𝑣− = 0

• But 𝑣𝑜𝑢𝑡 = −𝑖𝑅 where 𝑖 is the current that 
flows through the capacitor.
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Differentiator
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More Op-Amp Circuits
• Integrator:

• Open switch at 𝑡 = 0 so that 𝑄0 = 0
𝑣+ = 𝑣− = 0
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Example



Integrator

• A problem with an integrator is that a mechanical 
switch can be impractical

• Instead, one can use an n-channel MOSFET
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Integrator

One annoying feature about MOSFET’s is that the gate voltage is 
not compatible with most digital interfaces which range from 0 
to 2.5, 3.3V or 5V.



Other Clever Circuits

• Logarithmic amplifier:

• Shockley equation:

𝑖𝑏 = 𝐼0 𝑒 Τ𝑒𝑉𝑏𝑒 𝑘𝑇 − 1

𝑖𝑐 =
𝛽

𝛽 + 1
𝑖𝑏 = 𝛼𝑖𝑏
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Logarithmic Amplifier

𝑖𝑏 = 𝐼0 𝑒 Τ𝑒𝑉𝑏𝑒 𝑘𝑇 − 1 ≈ 𝐼0𝑒
𝑒𝑉𝑏𝑒/𝑘𝑇

𝑖𝑐 =
𝛽

𝛽 + 1
𝑖𝑏 = 𝛼𝑖𝑏

• But 𝑉𝑏𝑒 = 𝑣𝑜𝑢𝑡
• All the collector current must flow through the 

resistor
𝑣𝑖𝑛
𝑅

= 𝛼𝐼0𝑒
𝑒𝑣𝑜𝑢𝑡/𝑘𝑇

𝑣𝑜𝑢𝑡 = −
𝑘𝑇

𝑒
log

𝑣𝑖𝑛
𝛼𝐼0𝑅



Logarithmic Amplifier

The dynamic range is somewhat limited and there is a significant voltage offset.
These can be addressed by adding a summing amplifier as a second stage.


