Physics 53600 – Assignment #4 Solutions

1. The 2N3819 JFET has a pinch-off voltage of $V_P = -3$ V and a drain-source saturation current of $I_{DSS} = 11.7$ mA. When biased in the active region, the drain current is then given by

$$I_D = I_{DSS} \left(1 + \frac{V_G}{|V_P|} \right)^2$$

(a) What value of V_G will produce a constant drain current of 5 mA?

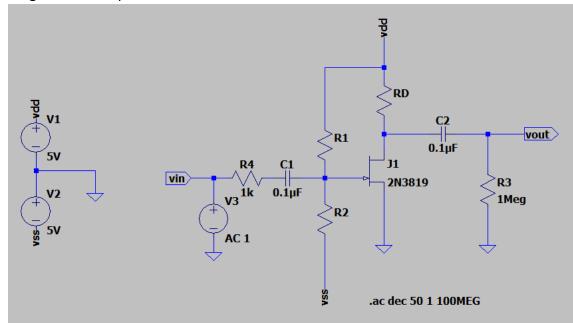
This is just straight-forward algebra where we solve for V_G :

$$V_G = |V_P| \left(\sqrt{\frac{I_D}{I_{DSS}}} - 1 \right) = -1.039 V$$

(b) Determine the values of R₁ and R₂ that will result in a voltage divider between $V_{DD} = +5 V$ and $V_{SS} = -5 V$ that produces the gate voltage determined in part (a) and has an impedance of 100 $k\Omega$. Consult the solutions to the midterm exam for an example.

From the solutions given to the midterm, we can use the formulas:

$$V_{out} = \frac{V_{CC}R_2 + V_{EE}R_1}{R_1 + R_2}$$
$$Z = \frac{R_1R_2}{R_1 + R_2}$$


from which we can get

$$R_{1} = Z \left(\frac{V_{CC} - V_{EE}}{V_{out} - V_{EE}} \right)$$
$$R_{2} = Z \left(\frac{V_{CC} - V_{EE}}{V_{CC} - V_{out}} \right)$$

Here, it is assumed that R_1 is connected to V_{CC} and R_2 is connected to V_{EE} . Using these equations, you can calculate:

$$R_1 = 252 \ k\Omega$$
$$R_2 = 166 \ k\Omega$$

(c) Consider the following circuit, in which R₄ represents the finite output impedance of a signal to be amplified.

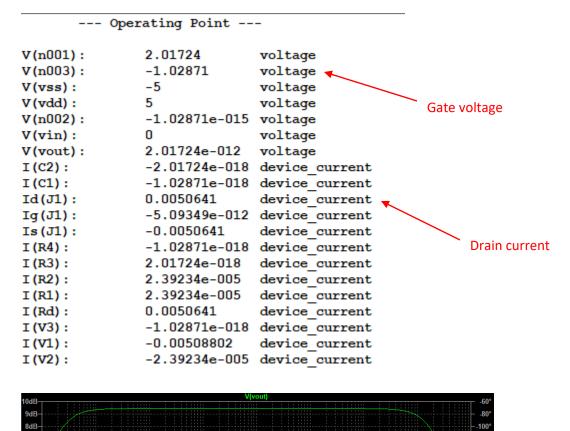
what value of R_D will produce a small-signal voltage gain of A = 3?

Well technically the question should have been asking for a gain of A = -3 because this is an inverting amplifier configuration. Since the current into the drain is

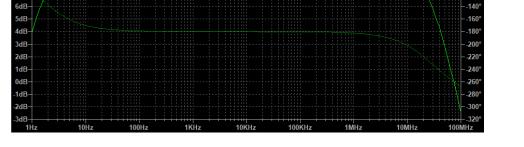
$$I_D = I_{DSS} \left(1 + \frac{V_G}{|V_P|} \right)^2$$

a small change in V_G results in a corresponding small change in I_D which is given by

$$\delta I_D = 2 \frac{I_{DSS}}{|V_P|} \left(1 + \frac{V_G}{|V_P|} \right) \delta V_G$$


and the small variation in the output voltage will be

$$\delta V_{out} = -R_D \delta I_D.$$


Thus,

$$R_D = -\frac{\delta V_{out}}{\delta I_D} = -\frac{\delta V_{out}}{\delta V_G} \left(2 \frac{I_{DSS}}{|V_P|} \left(1 + \frac{V_G}{|V_P|} \right) \right)^{-1}$$
$$= -A \left(2 \frac{I_{DSS}}{|V_P|} \left(1 + \frac{V_G}{|V_P|} \right) \right)^{-1}$$
$$= 588 \,\Omega$$

(d) Simulate the circuit using both a DC operating point and an AC frequency sweep analysis. Identify in the simulation output the quiescent drain current, the gate voltage, and the voltage gain at moderate frequencies of ~10 kHz.

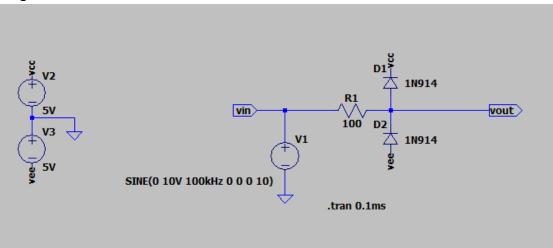
Here are the results of the DC operating point analysis:

1

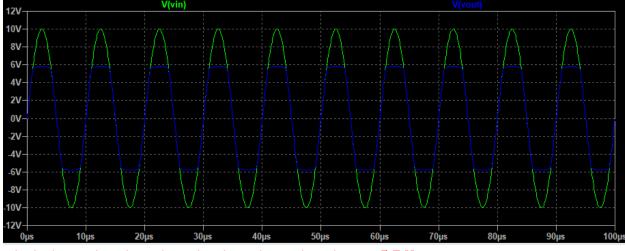
This shows that at moderate frequencies (eg. 10 kHz) the voltage gain is 9.45 dB. Using the definition. Using the definition

$$G = 20 \, \log_{10} A$$

-**12**0°


-140°

this confirms that


7dB-

$$A = 10^{G/20} = 2.97 \approx 3$$

 A diode clamp circuit can be used to limit the range of input voltages to a sensitive circuit. Using 1N914 silicon diodes, simulate the following circuit and demonstrate that the voltage at the node V_{out} has been limited and identify what the limiting voltage range is.

Here is the output of the simulation:

which shows that the voltage has been limited to about $\pm 5.7 V$.

3. The following circuit is a logarithmic amplifier:

From the DC operating point simulation of this circuit, it can be determined that the output voltage is $v_{out} = -0.635 V$ when the input voltage is $v_{in} = 0.1 V$.

(b) What is the output voltage when the input voltage is 3 V?

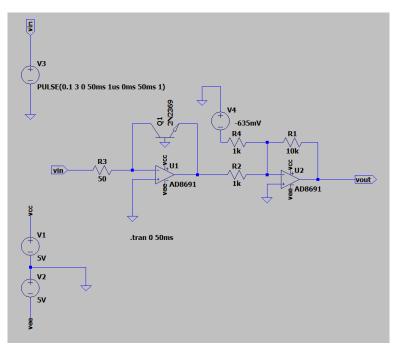
Again, the DC operating point simulation determines that $v_{out} = -0.736 V$ when $v_{in} = 3 V$.

(c) Design a second state operational amplifier circuit, configured as an inverting summing amplifier that produces an output of 0V when the input voltage is 0.1 V and an output voltage of 1 V when the input voltage is 3 V.

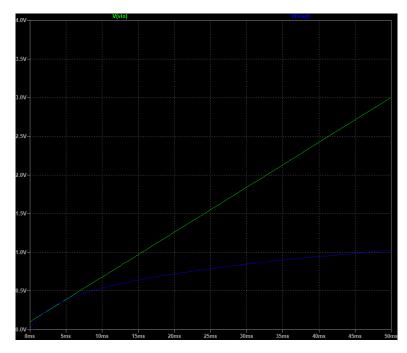
An inverting, summing amplifier, like the one shown on page 6 of Lecture 14, provides an output voltage that is related to the input voltages as follows:

$$v_{out} = -R_F \left(\frac{v_1}{R_1} + \frac{v_2}{R_2}\right)$$

In this case, we can select $R_1 = R_2$ to obtain


$$v_{out} = -\frac{R_F}{R_1}(v_1 + v_2)$$

where v_1 is the output of the logarithmic amplifier and v_2 is a constant voltage source that will satisfy the specified requirements. In this case, $v_2 = +0.635 V$ so that $v_{out} = 0 V$ when $v_{in} = 0.1 V$. Next, when $v_{in} = 3 V$, the output of the logarithmic amplifier would be $v_1 = -0.736 V$ and


$$v_{out} = -\frac{R_F}{R_1} ((-0.736 V) + (0.635 V)) = -\frac{R_F}{R_1} (-0.101 V) = 3 V$$

Thus, the ratio of resistances must be 10. A reasonable choice would be to use $R_F = 10 \ k\Omega$ and $R_1 = 1 \ k\Omega$.

The required circuit is shown below, although some of the resistor labels are different from what has been described previously.

with the following simulation output:

