Physics 53600 – Assignment #4 – Due March 26, 2020

1. The 2N3819 JFET has a pinch-off voltage of $V_P = -3$ V and a drain-source saturation current of $I_{DSS} = 11.7$ mA. When biased in the active region, the drain current is then given by

$$I_D = I_{DSS} \left(1 + \frac{V_G}{|V_P|} \right)^2$$

- (a) What value of V_G will produce a constant drain current of 5 mA?
- (b) Determine the values of R₁ and R₂ that will result in a voltage divider between $V_{DD} = +5 V$ and $V_{SS} = -5 V$ that produces the gate voltage determined in part (a) and has an impedance of 100 $k\Omega$. Consult the solutions to the midterm exam for an example.
- (c) Consider the following circuit, in which R₄ represents the finite output impedance of a signal to be amplified.

what value of R_D will produce a small-signal voltage gain of A = 3?

(d) Simulate the circuit using both a DC operating point and an AC frequency sweep analysis. Identify in the simulation output the quiescent drain current, the gate voltage, and the voltage gain at moderate frequencies of ~10 kHz. A diode clamp circuit can be used to limit the range of input voltages to a sensitive circuit. Using 1N914 silicon diodes, simulate the following circuit and demonstrate that the voltage at the node V_{out} has been limited and identify what the limiting voltage range is.

3. The following circuit is a logarithmic amplifier:

- (a) What is the output voltage when the input voltage is 0.1 V?
- (b) What is the output voltage when the input voltage is 3 V?
- (c) Design a second state operational amplifier circuit, configured as an inverting summing amplifier that produces an output of 0V when the input voltage is 0.1 V and an output voltage of 1 V when the input voltage is 3 V.