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Continuous Systems
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In the limit � ℓ⁄ → � this becomes the wave equation:
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Other Continuous Systems

• Longitudinal waves in a solid rod:

• Recall that strain was defined as the fractional 

increase in length of a small element: ∆� ∆�⁄

• Stress was defined as ∆�/�

• These were related by ∆� �⁄ = � ∆� ∆�⁄
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Notation:

• � labels which piece of the 

rod we are considering, 

analogous to the index �
when counting discrete 

masses.

• � quantifies how much the 

element of mass has 

moved.



Longitudinal Waves in a Solid Rod

∆� �⁄ = � ∆� ∆�⁄

• Force on one side of the element:
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• Force on the other side of the element:
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Longitudinal Waves in a Solid Rod

• Newton’s law:
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• Wave equation:
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Longitudinal Normal Modes

• What is the solution for a rod of length "?
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• Boundary conditions:

– Suppose one end is fixed

� 0 = 0

– No force at the free end of the rod so the stress is zero there.  
Strain ∝ stress, so the strain is also zero.
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• Look for solutions that are of the form

� � = .(�) cos4�



Longitudinal Normal Modes

� � = .(�) cos4�

• Inspired by the continuous string problem, we let

. � = � sin 7�

• Derivatives:
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Longitudinal Normal Modes

. � = � sin
4�

�
• This automatically satisfies the boundary condition at � = 0.
• At � = ", �� ��⁄ = 0:
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• Angular frequencies of normal modes are
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• Frequencies of normal modes are
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Longitudinal Normal Modes

• Frequencies of normal modes are
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Lowest possible frequency:
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Frequencies of Metal Chimes

30 

cm 40 

cm

• Suppose a set of chimes were made of copper rods, 
with lengths between 30 and 40 cm, rigidly fixed at 
one end.

• What frequencies should we expect if

� = 117 × 10A	N ∙ ��

 = 8.96 × 10G	kg ∙ �G
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117 × 10A	N ∙ ��

8.96 × 10G	kg ∙ �G

= 2260	 − 3010	KL

(highest octave on a piano)



Frequencies of Metal Chimes

• If the metal rods were not fixed at one end then the 

boundary conditions at both ends would be:
��
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• Allowed frequencies of normal modes:
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Longitudinal Waves in a Gas

• Increased pressure on a volume of gas decreases its 

volume

• Bulk modulus of elasticity is defined

M = −N
�O

�N



Longitudinal Waves in a Gas

• Equations of state for a gas:

– Ideal gas law: ON = P7�

– Adiabatic gas law: ONQ = RS�T�U��

• In an adiabatic process, no heat is absorbed

– Absorbing heat would remove mechanical energy from a system

– Propagation of sound waves through a gas is an example of an 
adiabatic process

• Bulk modulus calculated from equation of state:

NQ�O + VONQ��N = 0
�O

�N
= −VO/N

M = −N
�O

�N
= VO



Longitudinal Waves in a Gas

• By analogy with the solid rod, we consider an 

element of gas at position � of thickness Δ� that is 

displaced by a distance � � :
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Longitudinal Waves in a Gas

• Wave equation:
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• For a sold rod, � = �/ 

• For a gas, � = M/ = VO/ 

• Changes in pressure and density are very small compared 
with the average pressure and density.

• At standard temperature and pressure, air has

V = 1.40
O = 101.3	kPa
 = 1.2 kg mG⁄
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The Physics of Organ Pipes



Resonant Cavities

• Air under pressure enters at 
the bottom
– Entering air rapidly oscillates 

between the pipe and the lip

– The lower end is a pressure 
anti-node

• Top end can be open or 
closed
– Open end is a pressure 

node/displacement anti-
node

– Closed end a displacement 
node/pressure anti-node



Electrical Circuits

• First, consider one “lump” of a circuit:

• It is convenient to describe the resistor that is in 

parallel with the capacitor in terms of its 

conductance, c = 1/d′.

fgh

i = j/h′k(�)



Electrical Circuits

• Calculate the total impedance of the lump:

lm = d
l- = k4"

ln =
1

k4o
lp = 1/c

fgh

i = j/h′k(�)

q = d + k4"
� = c + k4o



Electrical Circuits

• Suppose the resistance, inductance, capacitance and 

conductance were distributed uniformly with length:

– Let dr be the resistance per unit length, "r be the 

inductance per unit length, etc…

• Consider the voltage on either side of the lump:
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Electric Circuits

• Current flowing through G’ and C’ is

∆u =
N(�)
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Electrical Circuits

• Voltage drop across the lump:

N � + �� = N � − u � q
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Electrical Circuits

• When we assume that the voltage is of the form

N �, � = N � w�:)
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• Using the previous result, 
#$x
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• Does this resemble the wave equation?

– Expand out q� = (d′ + k4"′)(c′ + k4or)

– When dr and c′ are small, which is frequently the case 

then q� ≈ −4�"ro′



Electrical Circuits

• Wave equation:
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• Speed of wave propagation is
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