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Vibrations of Continuous Systems

• Equations of motion for masses in the middle:
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• Amplitude of mass � for normal mode �:
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• Solution for normal modes:

�� � = ��,� cos���
• General solution:

�� � = "#� sin
���
 + 1

$

�%�
cos ��� − &�

Vibrations of Continuous Systems



Another Example

• Discrete masses on an elastic string with tension ':

• Consider transverse displacements:

• Vertical force on one mass:
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Another Example

• Equation of motion for mass �:
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• Normal modes:
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Masses on a String

First normal mode

Second normal mode



Continuous Systems

• What happens when the number of masses goes to 

infinity, while the linear mass density remains constant?
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Continuous Systems
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The Wave Equation: 7 = '/-



Solutions

• When we had  masses, the solutions were

+�,� � = ��,� cos ��� − &�
– � labels the mass along the string

– With a continuous system, � is replaced by �.

• Proposed solution to the wave equation for the 

continuous string:

+ �, � = 9(�) cos��
• Derivatives:
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Solutions

• Substitute into the wave equation:
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• This is the same differential equation as for the 

harmonic oscillator.

• Solutions are 9 � = � sin ��/7 + < cos ��/7



Solutions

9 � = � sin ��/7 + < cos ��/7
• Boundary conditions at the ends of the string: 

9 0 = 9 = = 0
9 � = � sin ��/7 where �= 7⁄ = ��

• Solutions can be written:

9� � = �� sin
���
=

• Complete solution describing the motion of the 

whole string:

+� �, � = �� sin
���
= cos���



Properties of the Solutions
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Forced Oscillations

• One end of the string is fixed, the other end is forced 
with the function @ � = < cos��.

+ 0, � = < cos��
+ =, � = 0

• The wave equation still holds so we expect solutions to 
be of the form

+ �, � = 9(�) cos��



Forced Oscillations

• This time we can’t constrain 9(�) to be zero at both 
ends.

• Now, let 9 � = � sin �� + A
– The constant � is just �/7.

– We need to solve for � and A
• Boundary condition at � = =:

sin �=
7 + A = 0		 ⇒ 			�=7 + A = C�

AD = C� −
�=
7

• Condition at � = 0:

< = �D sin AD



Forced Oscillations

• Amplitude of oscillations:

�D =	
<

sin C� − �=/7
• What does this mean?

– The driving force can excite many normal modes of 

oscillation

– When � = C�7/=, the amplitude gets very large



Forced Oscillations
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