

Physics 24100 Electricity & Optics

Lecture 7 – Chapter 23 sec. 4-5

Fall 2012 Semester Matthew Jones

Thursday's Clicker Question

- Assume that the electric field in a cell membrane is constant and the electric potential on the *inside* of the membrane is **50 mV** *lower* than the *outside*.
- What is the electric field in a cell membrane that is
 5 nm thick?

(a)
$$2.5 \times 10^{-6} \text{ V} \cdot \text{m}^{-1}$$

(c)
$$+10^7 \text{ V} \cdot \text{m}^{-1}$$

(b)
$$-10^7 \text{ V} \cdot \text{m}^{-1}$$

(d)
$$2.5 \times 10^6 \text{ V} \cdot \text{m}^{-1}$$

Clicker Question

- Direction of the \vec{E} field:
 - The \vec{E} field points "downhill" because $\vec{E} = -\vec{\nabla}V$
 - If the potential is lower inside the cell then \vec{E} is pointing in.
 - This is opposite the sign convention (where + pointed out)
 - Therefore, the E will be negative.

Clicker Question

- Magnitude of the \vec{E} field:
 - $-\vec{E}$ and V are related by $\vec{E}=-\vec{\nabla}V$
 - For a constant \vec{E} field in, say, the x-direction,

$$E = -\frac{\Delta V}{\Delta x}$$

- For the cell, $\Delta V = 50 \ mV$ and $\Delta x = 5 \ nm$
 - When measured using the sign convention provided.
- Therefore,

$$E = -\frac{5 \times 10^{-2} V}{5 \times 10^{-9} m} = -10^7 V/m$$

Electric Potential

• Relation between \vec{E} and V:

$$\vec{E} = -\vec{\nabla}V = -\left(\frac{\partial V}{\partial x}\hat{\imath} + \frac{\partial V}{\partial y}\hat{\jmath} + \frac{\partial V}{\partial z}\hat{k}\right)$$

The components are:

$$E_x = -\frac{\partial V}{\partial x}$$
, $E_y = -\frac{\partial V}{\partial y}$, $E_z = -\frac{\partial V}{\partial z}$

- ullet We can add a constant to V and not change ec E .
- For a point charge, we defined

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$
 so that $V(r) \to 0$ when $r \to \infty$.

Electric Potential

- This is a convenient definition when the potential does "vanish at infinity" but for some field configurations do not.
- Consider a constant electric field in the *x*-direction:

$$\Delta V = V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{\ell} = -E_x(x_b - x_a)$$

When we let $x_a \to \infty$ we get $\Delta V \to \infty$ which doesn't make sense...

- A better choice would be to define V = 0 when x = 0.
- That's what we did before:

$$V(x) = -E x$$

• If the field doesn't "vanish at infinity", don't use "infinity" as a reference point to define V(x).

Electric Potential due to several Point Charges

Electric potential for a single point charge:

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} \qquad \text{(when } r_{ref} \to \infty\text{)}$$

• Electric potential at point \vec{x} due to several point charges:

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{Q_i}{r_i}$$

where $r_i = |\vec{x} - \vec{x}_i|$ is the distance to each charge.

What about a continuous distribution of charge?

Continuous Charge Distributions

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{Q_i}{r_i} \longrightarrow V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r}$$

Continuous Charge Distributions

The same general guidelines as for calculating the electric field:

- 1. Pick an appropriate coordinate system...
 - Cartesian? Cylindrical? Spherical? Something else?
- 2. Draw a big diagram and label:
 - Source and field points
 - Useful integration variables
 - Element of charge, dQ
- 3. Evaluate the integral
- 4. Check limiting behavior

- 1. Coordinate system
- 2. Field point
- 3. Source point and integration variable
- 4. Express dQ and r in terms of integration variable

Write down the integral:

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r}$$

• In this case, the integration variable is s and,

$$dQ = \lambda ds$$
$$r = \sqrt{(x - s)^2 + y^2}$$

The integral is:

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int_{-L/2}^{L/2} \frac{\lambda \, ds}{\sqrt{(x-s)^2 + y^2}}$$

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int_{-L/2}^{L/2} \frac{\lambda \, ds}{\sqrt{(x-s)^2 + y^2}}$$

This is of the form

We will use " $\log x$ " for base e. We will use " $\log_{10} x$ " for base 10.

of the form
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \log\left(u + \sqrt{u^2 + a^2}\right)$$

but we have to make a change of variables...

- Let u = x s, then du = -ds
 - When s = -L/2, u = x + L/2
 - When s = +L/2, u = x L/2

$$V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int_{-L/2}^{L/2} \frac{\lambda \, ds}{\sqrt{(x-s)^2 + y^2}}$$
$$V(\vec{x}) = \frac{-\lambda}{4\pi\epsilon_0} \int_{x+L/2}^{x-L/2} \frac{du}{\sqrt{u^2 + y^2}}$$

Now we can use:

$$\int \frac{du}{\sqrt{u^2 + a^2}} = \log\left(u + \sqrt{u^2 + a^2}\right)$$

• Remember that $\log(b) - \log(a) = \log(b/a)$

$$V(\vec{x}) = \frac{-\lambda}{4\pi\epsilon_0} \int_{x+L/2}^{x-L/2} \frac{du}{\sqrt{u^2 + y^2}} = \frac{-\lambda}{\lim_{x \to 0} \int_{x+L/2}^{x+L/2} \frac{du}{\sqrt{u^2 + y^2}}$$

$$= \frac{\lambda}{4\pi\epsilon_0} \int_{x-L/2}^{x+L/2} \frac{du}{\sqrt{u^2 + y^2}}$$

$$V(\vec{x}) = \frac{\lambda}{4\pi\epsilon_0} \log \left(\frac{x + L/2 + \sqrt{(x + L/2)^2 + y^2}}{x - L/2 + \sqrt{(x - L/2)^2 + y^2}} \right)$$

Limiting behavior? We expect it to look like

$$V(r) \sim \frac{\lambda L}{r}$$

• Consider points where y = 0:

$$V(\vec{x}) = \frac{\lambda}{4\pi\epsilon_0} \log \left(\frac{x + L/2 + \sqrt{(x + L/2)^2}}{x - L/2 + \sqrt{(x - L/2)^2}} \right)$$

• When $x \gg L/2$, $\sqrt{(x \pm L/2)^2} = x \pm L/2$

$$V(\vec{x}) = \frac{\lambda}{4\pi\epsilon_0} \log\left(\frac{x + L/2}{x - L/2}\right) = \frac{\lambda}{4\pi\epsilon_0} \log\left(\frac{1 + L/2x}{1 - L/2x}\right)$$

• Taylor series:
$$\log\left(\frac{1+u}{1-u}\right) = 2\left(u + \frac{u^3}{3} + \frac{u^5}{5} + \cdots\right)$$
 I'm glad everyone is still awakel

$$V(\vec{x}) \to \frac{\lambda}{4\pi\epsilon_0} \frac{L}{x}$$

• The electric potential is a surface:

Electric Potential Surfaces

Lines of equal elevation

Equipotential Surfaces

- This is harder to visualize in three dimensions.
- Electric field lines are always perpendicular to equipotential surfaces.

Clicker Question

Which of the following statements is true about the work done by the electric field in moving a positive charge along the paths?

(B)
$$I = II = 0$$
, $III > IV$

(C)
$$III = IV < 0, I = II = 0$$

electric field lines

$$V_1 = 100 V$$

 $V_2 = 80 V$
 $V_3 = 60 V$
 $V_4 = 40 V$

Electric Potential Inside a Conductor

- There is no electric field in a conductor (if it is in electrostatic equilibrium)
- This does not mean that the electric potential is zero!

Electric Potential Outside a Conductor

- If V = constant inside a conductor then the outside must be an equipotential surface.
- The \vec{E} field must be perpendicular to the surface.

The Van de Graaff Generator

- Initial charge on the dome is Q
 - All the charge is on the outer surface.
 - Electric potential is $V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$
- A charge ΔQ is brought towards the dome.
 - Work done is $\Delta U = \frac{1}{4\pi\epsilon_0} \frac{Q\Delta Q}{R}$

The Van de Graaff Generator

- The charge ΔQ is brought inside the dome.
 - Work done is U=0
 - A surface charge of $-\Delta Q$ is induced on the inner surface
 - Outer surface must have charge $Q + \Delta Q$
- If the charge is in electrical contact with the inner surface (via a spark) then there is no net charge on the surface.
 - The outer surface retains the charge $Q + \Delta Q$.

Example

- Adding charge ΔQ requires work $\Delta U = \frac{1}{4\pi\epsilon_0} \frac{Q\Delta Q}{R}$
- What is the total work required to charge a Van de Graaff generator to an electric potential V if it was initially uncharged?
- What is the electric field at the surface once it is fully charged?

Final Clicker Question

If $Q_2 = 1 \mu C$ and $Q_1 = -2 \mu C$ which graph most accurately shows V(r)?

