

Physics 24100 Electricity & Optics

Lecture 4 – Chapter 22 sec. 2-3

Fall 2012 Semester Matthew Jones

Tuesday's Clicker Question

- Charge is uniformly distributed on a semicircular ring with radius a.
- The linear charge density is λ .
- We know that

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r^2} \hat{r}$$

• What is $\frac{dQ}{r^2}$ when \vec{x}_p is at the origin?

(a)
$$\frac{\lambda}{a}d\theta$$
 (b) $\lambda a d\theta$

(b)
$$\lambda a d\theta$$

(c)
$$\frac{\lambda d\theta}{a^2}$$

(d)
$$\pi a \lambda$$

Tuesday's Clicker Question

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r^2} \hat{r}$$

- The linear charge density is λ .
- Charge element: $dQ = \lambda ds$
- Element of arc length: $ds = a d\theta$
- Therefore, $dQ = \lambda a d\theta$
- The distance is constant, r = a
- Thus,

$$\frac{dQ}{r^2} = \frac{\lambda \ a \ d\theta}{a^2} = \frac{\lambda \ d\theta}{a}$$

(b)
$$\lambda a d\theta$$

(c)
$$\frac{\lambda d\theta}{a^2}$$

(d)
$$\pi a \lambda$$

Summary of Physics Concepts

- Fundamental concepts:
 - Coulomb's law: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \hat{r}$
 - Electric field: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} \implies \vec{F} = q \vec{E}$
 - Principle of superposition: $\vec{E} = \vec{E}_1 + \vec{E}_2 + ...$
- Connection with mechanics:
 - Newton's second law: $\vec{F} = m \vec{a}$
- Definitions and derived quantities:
 - Electric dipole, potential energy in an \vec{E} field.
 - Charge density: linear, surface, volume

Technical Concepts

- We also used some mathematical techniques:
 - We used a lot of vectors...
 - Series expansion:

$$\frac{1}{z+a} = \frac{1}{z}(1+a/z)^{-1} = \frac{1}{z}\left(1-\frac{a}{z}+\frac{a^2}{z^2}-\cdots\right)$$
$$\frac{1}{(z+a)^2} = \frac{1}{z^2}(1+a/z)^{-2} = \frac{1}{z^2}\left(1-\frac{2a}{z}+\frac{3a^2}{z^2}-\cdots\right)$$

We solved a differential equation:

$$\vec{F} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2} \Rightarrow \frac{d^2\vec{x}}{dt^2} = \frac{q\vec{E}}{m}$$
$$\vec{x}(t) = \vec{x}_0 + \vec{v}_0 t + \frac{q\vec{E}}{2m}t^2$$

Technical Concepts

- We used some geometrical constructs:
 - Differential elements:

Technical Concepts

• Then we evaluated some integrals (ugh...)

$$E_{x} = \frac{\lambda}{4\pi\epsilon_{0}} \int_{-L/2}^{L/2} \frac{(x-s)ds}{\left((x-s)^{2} + y^{2}\right)^{3/2}}$$

$$= \frac{\lambda}{4\pi\epsilon_{0}} \left(\frac{1}{\sqrt{(x-L/2)^{2} + y^{2}}} - \frac{1}{\sqrt{(x+L/2)^{2} + y^{2}}}\right)$$

- These technical skills are useful, but they are distinct from the physical concepts.
 - Try not to confuse the two...
 - You should understand the fundamental physics concepts
 - You should be proficient in basic technical concepts
 - For more complicated problems, refer to notes, reference books, math texts, appendices, google, etc...

Lecture 2 review: Electric Field Lines

- A positive charge has more lines coming out than going in.
- A negative charge has more lines going in than coming out.
- The direction of the electric field is tangent to the electric field lines at any point.
- The magnitude of the electric field is proportional to the density of electric field lines.

A test charge placed in the electric field will feel a force, $\vec{F}=q_0\vec{E}$.

- The magnitude of the electric field is proportional to the density of electric field lines.
- Consider how many electric field lines cross a small surface with area A:

• If the density is uniform over the surface and the surface is perpendicular to the \vec{E} field, then we define the flux to be...

phi is for flux
$$\phi = EA$$

- But, the surface might not be flat...
- The unit vector that is perpendicular to a surface at a given point is called the normal vector at that point.

If the surface is a plane, then the normal vector is the same at all points.

For a curved surface, the direction depends where the point is located.

• If the \vec{E} field is uniform over a flat surface, then the flux is:

$$\phi = A \,\hat{n} \cdot \vec{E} = E \, A \, \cos \theta$$

• But, the \overrightarrow{E} field might not be uniform over the whole surface...

- If the surface is tiny enough, then the \vec{E} field should be approximately uniform.
- The small element of flux through the tiny surface element is:

$$\Delta \phi = \hat{n} \cdot \vec{E} \, \Delta A$$

 Then we add up all the tiny flux elements over the whole surface, S, then:

$$\phi_{net} = \int_{S} \widehat{n} \cdot \overrightarrow{E} \, dA$$

(general definition of electric flux through a surface, S.)

Question

- Consider a point charge, q, at the origin surrounded by two spheres.
 - One has radius R
 - The other has radius 2R
- What can we say about the net flux through the two surfaces?

(b)
$$\phi_R = \phi_{2R}$$

(c)
$$\phi_R > \phi_{2R}$$

Question

- Consider a point charge, q, at the origin surrounded by two spheres.
 - One has radius R
 - The other has radius 2R
- What can we say about the net flux through the two surfaces?

(a)
$$\phi_R < \phi_{2R}$$

(a)
$$\phi_R < \phi_{2R}$$
 (b) $\phi_R = \phi_{2R}$ (c) $\phi_R > \phi_{2R}$

(c)
$$\phi_R > \phi_{2R}$$

Why Electric Flux?

Consider the electric flux through a closed surface:

- What is the net flux through the surface?
- If an \vec{E} field line goes in, it must also come out...
- The total flux is exactly zero!
 - Unless there are charges inside...

Why Electric Flux

What if there is a positive charge inside the surface?

- Then $\hat{n} \cdot \vec{E} > 0$ everywhere on the surface...
- Total flux, $\phi = \oint_{\mathcal{S}} \widehat{n} \cdot \overrightarrow{E} \, dA$ is positive.

This just means an integral over a closed path or surface, S.

Why Electric Flux

What if there is a negative charge inside the surface?

- Then $\hat{n} \cdot \vec{E} < 0$ everywhere on the surface...
- Total flux, $\phi = \oint_{\mathcal{S}} \hat{n} \cdot \vec{E} \, dA$ is negative.
- The total flux through a closed surface tells us something about the total charge inside.

Gauss's Law

$$\phi_{net} = \oint_{S} \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\epsilon_{0}}$$

- We can often use this to calculate \vec{E} ...
- We can use any choice of "Gaussian surface" if it makes the problem simple.
- It can be much easier than the integrals we did on Tuesday.
- Does this really work? Let's check...

Trivial Example: point charge

- Consider a point charge, Q, at the origin.
- What is \vec{E} at a point, \vec{r} ?
 - Consider a spherical surface of radius r
 with the charge at the center.
 - From symmetry, the \vec{E} field will be the same magnitude everywhere on the surface.
 - The \vec{E} field is always perpendicular to the surface.
 - Therefore, $\hat{r} \cdot \vec{E}$ is a constant everywhere on the surface... we can take it out of the integral.

The normal vector, \hat{n} is the same as \hat{r} ...

Trivial Example: point charge

• Gauss's Law:

$$\phi_{net} = \oint_{S} \hat{n} \cdot \vec{E} dA = \frac{Q_{inside}}{\epsilon_0}$$

• But, $\oint_S \hat{n} \cdot \vec{E} dA = \hat{n} \cdot \vec{E} \oint_S dA$

• So,
$$4\pi r^2 \hat{r} \cdot \vec{E} = \frac{Q}{\epsilon_0}$$
 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$

Gauss's Law

- Gauss's law works for the trivial example of a point charge, but it is also true in general.
- It is true even for continuous charge distributions.
- Next example: an infinite line of charge.

Question:

• Infinite line with positive charge density, λ , on the z-axis:

• What direction is \vec{E} pointing at any point \vec{r} in the x-y plane?

(a)
$$\hat{i}$$
 (b) \hat{j} (c) \hat{k} (d) \hat{r}

Question:

• Infinite line with positive charge density, λ , on the z-axis:

• What direction is \vec{E} pointing at any point \vec{r} in the x-y plane?

(a)
$$\hat{\imath}$$
 (b) $\hat{\jmath}$ (c) \hat{k} (d) $\hat{\imath}$

 Consider a Gaussian cylinder of radius r and length L along the line:

• What is Q_{inside} ?

$$Q_{inside} = \lambda L$$

 Consider a Gaussian cylinder of radius r and length L along the line:

What is the area of the curved surface?

$$A_{curved} = 2\pi r L$$

 Consider a Gaussian cylinder of radius r and length L along the line:

What is the area of each end?

$$A_{end} = \pi r^2$$

• But \vec{E} is perpendicular to the normal vector on the ends of the cylinder: $\hat{k} \cdot \vec{E} = 0$.

• Gauss's Law:
$$\phi_{net} = \oint_S \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\epsilon_0}$$
 $Q_{inside} = \lambda \, L$

$$\oint_{S} \hat{n} \cdot \vec{E} \, dA = \int_{curved} \hat{r} \cdot \vec{E} \, dA + \int_{ends} \hat{k} \cdot \vec{E} \, dA$$

$$\int_{curved} \hat{r} \cdot \vec{E} \, dA = 2\pi r L \, E$$

$$2\pi r L \, E = \frac{\lambda L}{\epsilon_0} \quad \text{so} \quad \vec{E} = \frac{1}{2\pi \epsilon_0} \frac{\lambda}{r} \hat{r}$$

Uniform Spherical Charge Distribution

Electric field is always pointing away from the center of the sphere.

At a fixed radius, $\hat{r} \cdot \vec{E}$ is constant.

If r < R then charge inside radius r is $Q_{inside} = \frac{4}{3}\pi r^3 \rho$

If r>R then charge inside radius r is $Q_{inside}=\frac{4}{3}\pi R^3 \rho$

Surface area of sphere of radius r is $A = 4\pi r^2$

Volume charge density is ρ

Radius of sphere is R

We can also write

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

Uniform Spherical Charge Distribution

Gauss's Law:

$$\phi_{net} = \oint_{S} \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\epsilon_0}$$

If
$$r < R$$
 then $4\pi r^2 E = \frac{4\pi r^3 \rho}{3\epsilon_0}$

$$\vec{E} = \frac{r \rho}{3\epsilon_0} \hat{r} \text{ or } \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \hat{r}$$

Volume charge density is ρ

Radius of sphere is R

If
$$r>R$$
 then $4\pi r^2 E=\frac{Q}{\epsilon_0}$
$$\vec{E}=\frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}\hat{r}$$

Question:

- Consider a spherical *shell* of charge with radius R and surface charge density, σ .
- The total charge is $Q = \sigma A = 4\pi R^2 \sigma$.
- What is \vec{E} at a point \vec{r} located outside the sphere? (r > R)

(a)
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2} \hat{r}$$
 (b) $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$ (c) $\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{Q}{r} \hat{r}$