

Physics 24100

Electricity & Optics

Lecture 21 – Chapter 30 sec. 1-4

Fall 2012 Semester Matthew Jones

Question

- An LC circuit has C=100~pF and $L=100~\mu H$.
- If it oscillates with an amplitude of 100 mV, what is the amplitude of the current?

- (a) $100 \, mA$
- (b) $100 \, \mu A$
- (c) 10 mA
- (d) $10 \mu A$

Question

 The energy bounces back and forth between the capacitor and the inductor.

bounces back and forth he capacitor and the
$$U_e = \frac{1}{2}CV^2$$

$$U_m = \frac{1}{2}LI^2$$

$$I = \sqrt{\frac{CV^2}{L}} = \sqrt{\frac{(10^{-10} F)(10^{-2} V^2)}{(10^{-4} H)}} = \sqrt{\frac{(10^{-8} A^2)}{10^{-4} A}}$$

$$\sqrt{(10^{-8} A^2)} = 10^{-4} A
= 0.1 mA
100 $\mu A$$$

Maxwell's Equations (so far)

•
$$\oint_{\mathcal{S}} \widehat{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{E}} \, dA = \frac{Q_{inside}}{\epsilon_0}$$
 (Gauss's law)

•
$$\oint_S \widehat{n} \cdot \overrightarrow{B} dA = 0$$
 (Gauss's law for magnetism)

•
$$\oint_{\mathcal{C}} \overrightarrow{E} \cdot d\overrightarrow{\ell} = -\frac{d}{dt} \int_{\mathcal{S}} \widehat{n} \cdot \overrightarrow{B} dA$$
 (Faraday's law)

•
$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{0}I$$
 (Ampere's law)

The Problem with Ampere's Law

Maxwell's Displacement Current

• We can think of the changing electric flux through S_2 as if it were a current:

$$I_d = \epsilon_0 \frac{d\phi_e}{dt} = \epsilon_0 \frac{d}{dt} \int_{S_2} \vec{E} \cdot \hat{n} \, dA$$

$$\oint_{C} \overrightarrow{B} \cdot d\overrightarrow{\ell} = \mu_{0}(I + I_{d}) = \mu_{0}I + \mu_{0}\epsilon_{0}\frac{d}{dt}\int_{S_{2}} \overrightarrow{E} \cdot \widehat{n} dA$$

Calculating Displacement Current

Parallel plate capacitor

Gauss's law: (Lecture 5)

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}$$

Electric flux:

$$\phi_e = EA = \frac{Q}{\epsilon_0}$$

Change in electric flux:

$$\frac{d\phi_e}{dt} = \frac{1}{\epsilon_0} \frac{dQ}{dt} = \frac{I}{\epsilon_0}$$

Displacement current:

$$I_d = \epsilon_0 \frac{d\phi_e}{dt} = I$$

Coaxial Capacitor

In Lecture 8 we calculated the electric field between the inner and outer conductors using Gauss's law:

$$\oint_{S} \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\epsilon_0}$$

We choose S to be a cylindrical Gaussian surface of length L and radius r with $R_1 < r < R_2$.

But the left-hand-side is just ϕ_e so the displacement current is

$$I_d = \epsilon_0 \frac{d\phi_e}{dt} = \frac{dQ_{inside}}{dt}$$

The real current flows into the ends of the Gaussian surface, the displacement current flows out the sides.

Clicker Question

Suppose charge flows between two spherical conductors.
 Which surface will have the largest displacement current

Clicker Question

Suppose charge flows between two spherical conductors.
 Which surface will have the largest displacement current

Maxwell's Equations (1864)

$$\oint_{S} \widehat{n} \cdot \overrightarrow{E} \, dA = \frac{Q_{inside}}{\epsilon_{0}}$$

$$\oint_{S} \widehat{n} \cdot \overrightarrow{B} \, dA = 0$$

$$\oint_{C} \overrightarrow{E} \cdot d\overrightarrow{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\oint_{C} \overrightarrow{B} \cdot d\overrightarrow{\ell} = \mu_{0}I + \mu_{0}\epsilon_{0}\frac{d\phi_{e}}{dt}$$

Maxwell's Equations in Free Space

In "free space" where there are no electric charges or sources of current, Maxwell's equations are quite symmetric:

$$\oint_{S} \widehat{n} \cdot \overrightarrow{E} \, dA = 0$$

$$\oint_{S} \widehat{n} \cdot \overrightarrow{B} \, dA = 0$$

$$\oint_{C} \overrightarrow{E} \cdot d\overrightarrow{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\oint_{C} \overrightarrow{B} \cdot d\overrightarrow{\ell} = \mu_{0} \varepsilon_{0} \frac{d\phi_{e}}{dt}$$

Maxwell's Equations in Free Space

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{0} \varepsilon_{0} \frac{d\phi_{e}}{dt}$$

A changing magnetic flux induces an electric field.

A changing electric flux induces a magnetic field.

Will this process continue indefinitely?

Light is an Electromagnetic Wave

Maxwell showed that these equations contain the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

where y(x, t) is a function of position and time.

General solution:

$$y(x,t) = f_1(x - vt) + f_2(x + vt)$$

Harmonic solutions:

$$y(x,t) = y_0 \sin(kx \pm \omega t)$$

- Wavelength, $\lambda = 2\pi/k$ and frequency $f = \omega/2\pi$.
- Velocity, $v = \lambda/f = \omega/k$.

Light is an Electromagnetic Wave

Faraday's Law:

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d\phi_{m}}{dt} = -\frac{\partial B_{y}}{\partial t} \Delta x \Delta z$$

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = E_{x}(z_{2}) \Delta x - E_{x}(z_{1}) \Delta x$$

$$\approx \frac{\partial E_{x}}{\partial z} \Delta z \Delta x$$

$$\stackrel{E_{x}}{\longrightarrow} \underbrace{\begin{vmatrix} E_{x} \\ E_{y} \end{vmatrix}}_{y} \underbrace{\begin{vmatrix} E_{x} \\ E_{x} \end{vmatrix}}_{y} \underbrace{\begin{vmatrix} E_{x} \\ E_{x} \end{vmatrix}}_{z} \underbrace{\begin{vmatrix} E_{x} \\ E_{x} \end{vmatrix}}_{z}$$

Light is an Electromagnetic Wave

Ampere's law:

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{0} \epsilon_{0} \frac{d\phi_{e}}{dt} = \mu_{0} \epsilon_{0} \frac{\partial E_{x}}{\partial t} \Delta y \Delta z$$

$$\oint_C \vec{B} \cdot d\vec{\ell} = B_y(z_1) \Delta y - B_y(z_2) \Delta y$$

$$\approx -\frac{\partial B_y}{\partial z} \Delta z \Delta y$$

Putting these together...

$$\frac{\partial E_{x}}{\partial z} = -\frac{\partial B_{y}}{\partial t}$$
$$-\frac{\partial B_{y}}{\partial z} = \mu_{0} \epsilon_{0} \frac{\partial E_{x}}{\partial t}$$

Differentiate the first with respect to *z*:

$$\frac{\partial^2 E_x}{\partial z^2} = -\frac{\partial^2 B_y}{\partial z \partial t}$$

Differentiate the second with respect to *t*:

$$-\frac{\partial^2 B_y}{\partial z \partial t} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

Velocity of Electromagnetic Waves

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$
$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

Speed of wave propagation is

$$v = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$= \frac{1}{\sqrt{(4\pi \times 10^{-7} N/A^2)(8.854 \times 10^{-12} C^2/N \cdot m)}}$$

$$= \mathbf{2.998 \times 10^8 m/s}$$

(speed of light)

The electromagnetic spectrum

- In 1850, the only known forms electromagnetic waves were ultraviolet, visible and infrared.
- The human eye is only sensitive to a very narrow range of wavelengths:

Discovery of Radio Waves

ELECTRIC WAVES

BEING

RESEARCHES ON THE PROPAGATION OF ELECTRIC
ACTION WITH FINITE VELOCITY
THROUGH SPACE

BY

DR. HEINRICH HERTZ

PROFESSOR OF PETRICS IN THE UNIVERSITY OF BONN

AUTHORISED ENGLISH TRANSLATION

BY D. E. JONES, B.Sc.

DERECTOR OF THURSDAY, EDUCATION TO THE STAFFORDMENT COUNTY QUONING. MATELY PROFESSOR OF PUTHICS IN THE CHIVERSITY COLLEGE OF WALES, ARENVETWITH

WITH A PREPACE BY LORD KELVIN, LLD., D.C.L.

PARTICULAR OF THE ROYAL ROCKETY, PROFESSOR OF MATURAL PRILOSCENT IN THE UNIVERSITY OF DILABOUM, AND FELLOW OF ST. PRIES'S COLLING, CAPSHIER.

London

MACMILLAN AND CO.

AND NEW YORK

1893

All rights reserved

The Electromagnetic Spectrum

Electromagnetic Waves

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

- A solution is $E_{\chi}(z,t)=E_0\sin(kz-\omega t)$ where $\omega=kc=2\pi c/\lambda$
- What is the magnetic field?

$$\frac{\partial B_y}{\partial t} = -\frac{\partial E_x}{\partial z} = -kE_0 \cos(kz - \omega t)$$
$$B_y(x,t) = \frac{k}{\omega} E_0 \sin(kx - \omega t)$$

Electromagnetic Waves

- \vec{E} , \vec{B} and \vec{v} are mutually perpendicular.
- In general, the direction is

$$\hat{s} = \hat{E} \times \hat{B}$$

Energy in Electromagnetic Waves

Energy stored in electric and magnetic fields (lecture 17):

$$u_e = \frac{1}{2}\epsilon_0 E^2 \qquad u_m = \frac{1}{2\mu_0} B^2$$

For an electromagnetic wave, $B = E/c = E\sqrt{\mu_0 \epsilon_0}$

$$u_m = \frac{1}{2\mu_0} B^2 = \frac{1}{2} \epsilon_0 E^2 = u_e$$

The total energy density is

$$u = u_m + u_e = \epsilon_0 E^2$$

Intensity of Electromagnetic Waves

 Intensity is defined as the average power transmitted per unit area.

Intensity = Energy density \times wave velocity

$$I = \epsilon_0 c \langle E^2 \rangle = \frac{\langle E^2 \rangle}{\mu_0 c}$$

$$\mu_0 c = 377 \Omega \equiv Z_0$$

(Impedance of free space)

Poynting Vector

• We can construct a vector from the intensity and the direction $\hat{s} = \hat{E} \times \hat{B}$:

$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$
$$\langle \vec{S} \rangle = \frac{\langle E^2 \rangle}{Z_0} = I$$

- This represents the flow of power in the direction \hat{s}
- Average electric field: $E_{rms} = E_0/\sqrt{2}$

$$\langle \vec{S} \rangle = \frac{(E_0)^2}{2Z_0}$$

• Units: Watts/m²

Question

 The magnetic field component of a radio wave is expressed:

$$B_{y} = B_{0} \sin(kz - \omega t)$$

• In which directions do the Poynting vector and the \vec{E} -field point?

(a)
$$+z$$
, $+x$

$$(b) +z,-x$$

(c)
$$-z,+x$$

$$(d) -z,-x$$