

Physics 24100

Electricity & Optics

Lecture 15 – Chapter 27 sec. 3-5

Fall 2012 Semester Matthew Jones

Clicker Question

- Treat a lightning bolt like a long, straight wire.
- If the current in a lightning bolt is 100 kA, how would the magnetic field 1 km away compare with the Earth's magnetic field $(5 \times 10^{-5} T)$?
- (a) Much less
- (b) Much greater
- (c) About the same

$$|\vec{B}| = \frac{\mu_0}{4\pi} \frac{2I}{R}$$

$$= \frac{2 \times 10^{-7} \times 10^5}{10^3} \sim 10^{-5} T$$

$$(\mu_0 = 4\pi \times 10^{-7} \ T \cdot m/A)$$

Physics Help Center Survey

PHYS Building, Rms. 11-12

How often do you use the Help Center on average?

- A. Never
- B. Once or at most twice a semester
- C. Several times in a semester
- D. Around once a week
- E. More than once a week

Physics Help Center Survey

PHYS Building, Rms. 11-12

How useful was your Help Center visit?

- A. I did not use the Help Center
- B. Useless
- C. Not very useful
- D. Useful
- E. Very useful

Magnetic Fields

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \ d\vec{\ell} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \int \frac{I \ d\vec{\ell} \times \vec{r}}{r^3}$$

$$\left| \vec{B} \right| = \frac{\mu_0}{4\pi} \frac{2I}{R}$$

$$|\vec{B}| = \frac{\mu_0}{2} \frac{IR^2}{(R^2 + z^2)^{3/2}}$$

$$|\vec{B}| = \mu_0 n I$$

Forces on Current Carrying Wires

- Two wires carrying currents I_1 and I_2 will exert forces on each other:
 - Magnetic field from I_1 is $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I_1 \ d\hat{\ell}_1 \times \hat{r}}{r^2}$
 - Force on I_2 is $d\vec{F}_{12} = I_2 \ d\vec{\ell}_2 \times \vec{B}$
- Conversely
 - Magnetic field from I_2 is $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I_2 \ d\hat{\ell}_2 \times \hat{r}}{r^2}$
 - Force on I_1 is $d\vec{F}_{21} = I_1 d\vec{\ell}_1 \times \vec{B}$

Forces on Parallel Wires

Force per unit length:

$$\frac{dF_{12}}{d\ell_2} = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{R}$$

Force on Parallel Wires

Magnetic "Pressure"

Normal dipole magnets $B \sim 1 T$

Superconducting dipole magnets $B \sim 5 T$

Magnets need to withstand about 5 tons of internal forces without distortion.

Remember Gauss's Law?

• Electric field:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{r}}{r^2} dQ$$

• Gauss's Law:

$$\oint_{S} \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\epsilon_{0}}$$

- If \vec{E} is constant over the surface then we can bring it outside the integral
 - The integral is just the surface area
 - This works only when there is sufficient symmetry

Gauss's Law Applied Magnetism

- In magnetism we can have dipoles or currents but no magnetic monopoles
- Gauss's law:

$$\oint_{S} \hat{n} \cdot \vec{B} \, dA = \frac{Q_{inside}}{\epsilon_0} = 0$$

One of Maxwell's Equations:

$$\nabla \cdot \vec{B} = 0$$

Ampere's Law

- But can we do something similar to calculate the magnetic field in cases with lots of symmetry?
- Yes:

Example

- What is the magnetic field around a long, straight wire?
- From symmetry, we expect that the magnetic field is always azimuthal: $\vec{B} = B\hat{\varphi}$

• The path length element is also azimuthal: $d\vec{\ell} = d\ell\hat{\varphi}$

$$\oint_C \vec{B} \cdot d\vec{\ell} = B \oint_C d\ell = \mu_0 I_C$$

$$2\pi BR = \mu_0 I_C \implies B = \frac{\mu_0 I_C}{2\pi R}$$

Magnetic Field Inside a Long Straight Wire

$$I_C = I \frac{r^2}{R^2}$$
 Ratio of areas inside the wire

$$B(r) = \frac{\mu_0 I_C}{2\pi R}$$

$$B = \frac{\mu_0 I r}{2\pi R^2}$$
 (Inside)

$$B = \frac{\mu_0 I}{2\pi R}$$
 (Outside)

Magnetic Field Inside a Solenoid

- Symmetry principles:
 - The magnetic field always points along the axis of the solenoid: $\vec{B} = B\hat{k}$
 - It is independent of z, except at the ends.
- Outside the solenoid, we expect $\vec{B} \to 0$ as $r \to \infty$
- Inside the solenoid, does \vec{B} depend on r?

Magnetic Field Inside a Solenoid

$$\oint_C \vec{B} \cdot d\vec{\ell} = \int_a^b \vec{B} \cdot d\vec{\ell} + \int_b^c \vec{B} \cdot d\vec{\ell} + \int_c^d \vec{B} \cdot d\vec{\ell} + \int_d^d \vec{B} \cdot d\vec{\ell} = \mu_0 I_C$$

These will all be zero!

Magnetic Field Inside a Solenoid

n is the number of turns per unit length.

Make the path cd very far away, where $\vec{B} \approx 0$.

• Enclosed current: $I_C = n I h$

$$\oint_C \vec{B} \cdot d\vec{\ell} = B h = \mu_0 I_C$$

$$B = \mu_0 n I$$

Independent of r inside the solenoid.

Magnetic Field Inside a Toroid

When Ampere's Law doesn't Help

finite length current segment is (unphysical)

current is not continuous (time dependent)

Magnetic Properties of Materials

- Atoms in many materials act like magnetic dipoles.
- Magnetization is the net dipole moment per unit volume:

$$\overrightarrow{M} = \frac{d\overrightarrow{\mu}}{dV}$$

• In the presence of an external magnetic field, these dipoles can start to line up with the field:

Net current inside the material is zero. We are left with a surface current and therefore a magnetic moment

Magnetization and "Bound Current"

Magnetic dipole for a current loop: $\vec{\mu} = A \; I \; \hat{n}$

Magnetic moment per unit length:

$$d\mu = A di$$

Magnetization:

$$M = \frac{d\mu}{dV} = \frac{d\mu}{A\,d\ell} = \frac{di}{d\ell}$$

This is the "surface current" per unit length.

Magnetic field due to the surface current is the same as in a solenoid:

$$B = \mu_0 \, \underline{n} \, \underline{I} = \mu_0 \, M$$

current per unit length

Magnetization and Magnetic Susceptibility

- How well do the microscopic magnetic dipoles align with an external applied magnetic field?
- Simplest model: linear dependence on \vec{B}_{app}
 - Magnetization: $\vec{M} \propto \vec{B}_{app}$
 - Magnetic field due to surface current:

$$\vec{B}_m = \mu_0 \vec{M} \equiv \chi_m \vec{B}_{app}$$

- Magnetic susceptibility: χ_m
- Total magnetic field:

$$\vec{B} = \vec{B}_{app} + \vec{B}_m = (1 + \chi_m)\vec{B}_{app} \equiv K_m\vec{B}_{app}$$

- Relative permeability: K_m

Magnetic Susceptibility

 Different materials react differently to external magnetic fields:

$\chi_m > 0$ small χ_m	Paramagnetism	aluminum, tungsten
$\chi_m < 0$ small $ \chi_m $	Diamagnetism	bismuth, copper, silver
$\chi_m > 0$ large χ_m	Ferromagnetism	iron, cobalt, nickel

- Dipoles in paramagnetic materials align with \vec{B}_{app}
- Dipoles in diamagnetic materials align opposite \vec{B}_{app}
- ullet Ferromagnetic materials align strongly even in weak $ec{B}_{app}$

Magnetic Susceptibility

Material	χ_m	Туре
Bi	- 1.66 x 10 ⁻⁵	diamagnetic
Ag	- 2.6 x 10 ⁻⁵	diamagnetic
Al	2.3 x 10 ⁻⁵	paramagnetic
Fe (annealed)	5,500	ferromagnetic
Permalloy	25,000	ferromagnetic
mu-metal	100,000	ferromagnetic
superconductor	- 1	diamagnetic (perfect)

Clicker Question

Rank the current loops in order of increasing force:

