

## Physics 24100

# **Electricity & Optics**

Lecture 10 – Chapter 25 sec. 1-3

Fall 2012 Semester Matthew Jones

#### **Tuesday's Question**

- Three circuits, consisting of two capacitors and a switch, are initially charged as indicated.
- After the switches are closed, in which circuit will the charge on the left increase?



(d) None of them

## Tuesday's Question



- Charge is conserved, Q = 9q
- Calculate equivalent capacitance,  $C_{equiv}$
- Then calculate,  $V = Q/C_{equiv}$
- Finally, calculate,  $Q_{left} = C_{equiv}V$

## Tuesday's Question







#### **Mini-Review**

- Lecture 1:  $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \hat{r}$
- Lecture 2:  $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$  and  $\vec{F} = q\vec{E}$
- Lecture 3:  $\Delta \vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q(\vec{x}_S)}{r^2} \hat{r} \rightarrow \vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{r}}{r^2} dQ$
- Lecture 4:  $\phi_{net} = \oint_{S} \hat{n} \cdot \vec{E} dA = \frac{Q_{inside}}{\epsilon_0}$
- Lecture 5:  $\vec{E}$  near conductors and insulators
- Lecture 6:  $\Delta V = -\int_a^b \vec{E} \cdot d\vec{\ell}$  and  $\vec{E} = -\vec{\nabla} V$   $V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$

#### **Mini-Review**

- Lecture 7:  $V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \sum_i \frac{Q_i}{r_i} \implies V(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r}$
- Lecture 8:  $C = \frac{Q}{V}$  and  $U = \frac{1}{2}CV^2$
- Lecture 9:  $C_{\parallel} = C_1 + C_2$  and  $C_{series} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$
- But wait! There's more...
  - No  $\vec{E}$  field inside a conductor
  - Principle of superposition
  - Surface charge densities
  - $-\vec{E}$  and V for example geometries
  - Work and energy
  - Dielectrics and  $\epsilon = \kappa \; \epsilon_0$
  - Lots of examples and clicker questions...

## **Electrostatic Equilibrium**

- No net motion of charge
- Insulators:
  - No free charges
- Conductors:
  - Charges are pushed by any electric field until their own electric field cancels the original one
  - The motion stops when charges accumulate at a surface
  - The net electric field in the conductor is zero
- What if charge is added to or removed from a surface as quickly as it accumulates?
  - The charge will continue to flow...
  - Not a state of electrostatic equilibrium

- When the motion of charge carriers are not restricted, they will flow.
- By convention, the direction of an electric current is in the direction that positive charge carriers move:



• If they are negatively charged, then the current is opposite their motion:



- In metals, the charge carriers are electrons
- In chemical solutions or ionized gasses, the charge carriers can be both positive and negative.

 Electric current is the net positive charge moving across a surface per unit time:



$$I = \frac{\Delta Q}{\Delta t}$$
 Units:  $Amperes = \frac{Coulombs}{second}$ 

## **Drift Velocity**

Motion of individual charges is usually not uniform:



The average distance moved per unit time is the drift velocity:

$$v_D = \frac{\overline{\Delta x}}{\Delta t}$$

---- With  $\vec{E}$ 

– – – – – Without  $ec{E}$ 

#### Drift speed, total charge and current



 $n = \frac{\text{# of charge carriers}}{\text{unit volume}}$ q = charge of each carrier $v_D = \text{drift velocity}$ 

## Drift speed, total charge and current



$$\Delta Q = n q \Delta V$$

$$\Delta V = A v_D \Delta t$$

$$I = \frac{\Delta Q}{\Delta t} = \frac{n q A v_D \Delta t}{\Delta t} = n q A v_D$$

## **Example**

- What is the drift velocity in #12 AWG copper wire carrying 1 ampere of current?
  - What's the diameter of #12 AWG???
    - Google "wire gauge"... it's roughly 2 mm
  - How many charge carriers?
    - Assume one charge carrier per copper atom
    - How many copper atoms per unit volume?
    - How many copper atoms per unit mass?

Atomic mass: m = 63.546 g/mol

Density of copper:  $ho=8.94~g/cm^3$ 

## **Current Density**

- The flow of charge might not be uniformly across a surface
  - The magnitude of the local current might change
  - The direction of the drift velocity could change
- Current:  $I = n q v_D A$
- Current density:  $\vec{J} = n \ q \ \vec{v}_D$
- They are related:

$$I = \int_{S} \vec{J} \cdot d\vec{A}$$



#### Resistance

- Electrons in a metal do not accelerate indefinitely
  - They eventually hit an atom in the metal
  - The collision is inelastic and the electron loses all, or some of its energy
- Instantaneous vs average velocity:



 Resistance is a property of a material related to how rapidly charge carriers lose energy

#### Resistance



- The greater the current, the more energy is transferred to the material through inelastic collisions.
- Electric potential difference:  $\Delta V \propto I$

$$\Delta V = R I \longrightarrow R = \frac{\Delta V}{I}$$

$$Ohms = \frac{Volts}{Ampere}$$

#### Ohm's Law

Potential difference is proportional to current

$$\Delta V = I R$$

This is usually a good approximation...



#### Ohm's Law

Potential difference is proportional to current

$$\Delta V = I R$$

This is usually a good approximation...





## Resistance depends on geometry



- Resistance is proportional to  $\Delta L$
- Resistance is inversely proportional to A
- Resistivity,  $\rho$ , is independent of geometry

$$R = \frac{\boldsymbol{\rho} \ \Delta L}{A}$$

#### Resistivity Depends on Temperature

- In general, resistivity increases with temperature  $\Delta \rho \propto \Delta T$
- The temperature coefficient,  $\alpha$ , is defined as the fractional change in resistance:

$$\alpha = \frac{1}{\rho} \frac{\Delta \rho}{\Delta T}$$

 Resistivity and the temperature coefficient are usually given for a particular reference temperature (for example, 20 °C)

# Resistivities and Temperature Coefficients

| Material   | Resistivity, $ ho$ $(\Omega \cdot m)$ | Temp. coeff., $\alpha$ ( $K^{-1}$ ) |
|------------|---------------------------------------|-------------------------------------|
| Ag         | 1.6 x 10 <sup>-8</sup>                | 3.8 x 10 <sup>-3</sup>              |
| Cu         | 1.7 x 10 <sup>-8</sup>                | 3.9 x 10 <sup>-3</sup>              |
| W          | 5.5 x 10 <sup>-8</sup>                | 4.5 x 10 <sup>-3</sup>              |
| Si         | 640                                   | -7.5 x 10 <sup>-2</sup>             |
| Si, n-type | 8.7 x 10 <sup>-4</sup>                |                                     |
| Si, p-type | 2.8 x 10 <sup>-3</sup>                |                                     |
| glass      | 10 <sup>10</sup> -10 <sup>14</sup>    |                                     |

## **Temperature Dependence**

$$\rho - \rho_0 = \rho_0 \alpha (T - T_0)$$

$$\rho(T) = \rho_0 (1 + \alpha (T - T_0))$$

• Also true for resistance:  $R = \rho L/A$ 

$$R - R_0 = R_0 \alpha (T - T_0)$$

$$R(T) = R_0 (1 + \alpha (T - T_0))$$

## **Example**

 What is the resistance of a 10 cm long Tungsten wire with a diameter of 0.2 mm at 20 °C and at 3000 K?

$$\rho_0 = 5.5 \times 10^{-8} \,\Omega \cdot m$$
 $\alpha = 4.5 \times 10^{-3} \,K^{-1}$ 

## Rate of Energy Loss



Charges moving through a resistor lose energy

$$\Delta U = q \ \Delta V = q \ I \ R$$

Total energy lost per unit time:

$$P = n q A v_D \times I R$$
$$P = I^2 R$$

Electric potential energy is converted into heat.

## **Clicker Question**

- The resistance across the human body is approximately 2  $k\Omega$
- If it takes only  $50 \, mA$  of current to kill a human, what voltage could be lethal?

(a) 0.1 Volts

(b) 1 Volt

(c) 10 Volts

(d) 100 Volts

(e) 1000 Volts



- A chemical battery is a source of electric potential
  - The chemical reaction creates a potential difference across the poles:



The chemical reaction maintains a constant potential difference.

Positive charges at the + end have a greater electric potential than positive charges at the – end.

There must be an electric field between the poles.

If free charges were present, they would be accelerated by the electric field – the field does work on the charges.

Their potential energy decreases as they move towards the – pole.